| R

~| Design and Implementation of a Distributed |-
| Network of Autonomous and Heterogeneous
Services

Director: Diego Casado Mansilla
Degree: Computer Engineering

University of Deusto - 2020

-

Introduction

BSPL

Networking

Demo

Results and Conclusions
Future Work

Questions and Answers

Index

NO U b WDN

-~
7 o ‘ >
‘- ln - _
Introduction

s y w

sl \-i

Key areas (1/2)

Interaction-oriented design

Designing the system around agent
Interactions.

Separates interaction from
implementation.

Information sent as messages but
interpreted as interaction events.

Multi-agent systems

Composed of multiple independent
agents.

Each agent has a local view of the
system.

No single agent in charge, although
control might be unevenly distributed.

Key areas (2/2)

Peer-to-peer networks

Each node of the network can act as client and server.
Each node is “equal”.
Nodes connect directly, forming a distributed network.

Networking model mirrors logic model, but can face issues such as multiple NAT layers.

Goal of the project

Create a network of autonomous, heterogeneous services (NaHS).

Services are offered and consumed by agents.

How agents interact is defined by protocols. Interacting is enacting a protocol.

An agent needs two things:
- Networking capabilities

- Interaction capabilities

Programming language

- Compiled.
- Statically typed.
- No classes

- Garbage collected.

- Native concurrency.

- Native test tools.

- Native package management.
- Pointers.

- Memory safety.

) 5

—

: N
_ » S e\
Bllndlngly Simple Protocol Language

ﬁ -1’ e 4 R

.

.
.

What is BSPL?

Language to describe interaction protocols.
Designed with asynchrony in mind.
Contains a protocol name, roles, parameters and actions.

Causality is derived from parameters.

TimeTelling {
role Consumer, Provider
parameter out ID key, out time

Consumer -> Provider: askTime[out ID]
Provider -> Consumer: tellTime[in ID, out time]

What is BSPL?

Protocol name

/

/

LTimeTelling {

role Consumer, Provider
//////'parameter out ID key, out time
C

sumer -> ProvideN askTime[O

/

Roles: each one will be played

by an agent.

/

Parameters: information
exchanged in the interaction.

=

The combination of key
parameters identifies each
enactment

“Out” parameters are
generated, “in” parameters
received, “nil” parameters

ambiguous

10

What is BSPL?

TimeTelling {
role Consumer, Provider
parameter out ID key, out time

Consumer -> Provider: askTime[out ID]
Prgvider -> Cons r: tellTl in ID, out time]

[

Action = source + target + message Message: new information in the enactment

[N

Source: agent that started the action A Target: agent affected by the action

A parameter can't be received before
being generated

11

The BSPL package

- proto
Types and structures to define a BPSL protocol in Go.

- parser
Converts raw protocols into the types defined by proto.

- reason
Interfaces for protocol enactments (instances) and reasoners.

- implementation
Implementation of all interfaces of reason except for the reasoner interface.

12

Parser

- Receives a raw protocol as input.
- Produces a Go representation of the protocol.

. Uses a lexer defined with a deterministic finite
state automaton.

- Validates the basic correctness of a protocol.

raw
text

token
table

Go
struct

ProtocolName {
roles A, B
parameters ...

i

Lexer

Token Value

word ProtocolName

open_brace {

i

Parser

!

type Protocol struct {

name string: ProtocolNanme,

13

Interfaces

Enable further development while maintaining implementation ambiguity.

// Instance of a Protocol
type Instance interface {
// Diff identifies what action has been run between two versions of an
// instance. It returns the action, the new values and an error.
// Currently only one action is supported between instace versions
// An action slice is returned because two actions may have happened,
// e.g. Accept or Reject. In that case the Reasoner must find out which
// one it was.
Diff(Instance) ([]proto.Action, Values, error)
// Equals compares two instances
Equals(Instance) bool
// GetValue returns the value of the parameter of an instance.
GetValue(string) string
// Key of the Instance.
Key() string
// Marshal an Instance to bytes.
Marshal() ([]byte, error)

Par t of the Instance

// Reasoner handles the protocol instances and actions related to them
type Reasoner interface {

// DropInstance cancels an Instance for whatever motive
DropInstance(instanceKey string, motive string) error

// GetInstance returns an Instance given the instance key
GetInstance(instanceKey string) (Instance, bool)

// ALl instances of a Protocol

Instances(p proto.Protocol) []Instance

// Instantiate a protocol. Check if the assigned role is a role

// the reasoner is willing to play.

Instantiate(p proto.Protocol, roles Roles, ins Values) (Instance, error)
// RegisterInstance registers an Instance created by another Reasoner
RegisterInstance(i Instance) error

// UpdateInstance updates an instance with a newer version of itself
// as long as a valid run from one to the other.
UpdateInstance(newVersion Instance) error

14

-
L il
« & .b
. - .
Networking

s y w

sl \-i

LibP2P

Modular network stack.

Addresses issues of peer-to-peer networking in different levels:
dialing, data transmission, identity, security...

Main implementations: JS and Go.
Host: type for network node.

Each host has a unique ID derived from its private key.

16

Discovery

Rendezvous protocol.

Rendezvous nodes as initial connections.

Nodes register and are redirected to other nodes.

Nodes can also be manually added:

nodeB.Peerstore().AddAddrs(
nodeA.ID(), nodeA.Addrs(),
peerstore.PermanentAddrTTL

Node A Rendezvous Point Node B

1 1 1

1 Reqist 1 1

. egister > :

| | : |

| " Discover :

| | |

|) Inform >

L ConEwect :

1 1 1
Node A Rendezvous Point Node B

17

Design (1/2)

The Node type provides most of the networking capabilities:
discovery, event management, private networking...

Each agent has a Node attribute.
Each node has a LibP2P Hos't attribute.
Node has a Reasoner attribute, specified by each agent.

Private networks: by sharing a key.

18

Design (2/2)

Events: marshalled instances that wrap interactions.
Events are sent with network streams via TCP connections.
Flexibility by providing access to the LibP2P Hos't.

Accessibility by not requiring the user to access it.

19

Implementation

Vv Variables
& exchangeEnd
& exchangeErr
& exchangeOk
& exchangeSeparator
& listenAddrs

& logger
& privNetPSKFile

Vv Constants

listenAddrTCPIPv4
listenAddrTCPIPv6
LogName
protocolDiscoverylD
protocolEcholD
protocolEventID

rendezvousString

v Functions

echoHandlerRead

1 echoHandlerWrite

loadPrivNetPSK
LocalNode
newNode
NewNode

nodeFromPrivKey

) NodeFromPrivKey

7 readEventResponse

unwrapProtocol

wrapProtocol

Functionality is centered around Node.

Images are from the net package.

v Types
%3 Contacts
> ®z ErrHandleEvent
v %z Node

&) AddContact
AddProtocol

&) addRemotePeer

¥ Addrs

7 AddServices
Announce

@ configDiscovery

) discoveryHandler
discoveryReadData

) discoveryWriteData

@ echoHandler

U eventHandler
ExportKey

3 FindContact

@ FindNodes

) 1D
Peerstore

7 Reasoner
runEvent

&) SendEvent

setStreamHandlers

#3 protocolWrapper
43 Service
#3 Services

20

Implementation

- Agent = reasoner + networking
capabilities

- Each agent runs interactions as
goroutines and can therefore continue
functioning while they are processed.

- When necessary, different routines
interact using channels.

// Person is an agent representing human person
type Person struct {

Node *nahs.Node

reasoner *personReasoner

}

type personReasoner struct {
Node *nahs.Node

offeredServices map[stringlbspl.Protocol
consumedServices map[stringlbspl.Protocol
openlnstances map[stringlbspl.Instance

[
[
[
droppedInstances map[stringlbspl.Instance

]
]
]
]
stationSearches map[stringlchan string

rentalRequests map[string]chan string

maxPrice float64
currentBikeRide string

// Travel from src to dst
func (p Person) Travel(src Coords, dst Coords) error {

// find nearest station

logger.Infof("\t[%s] Search for station", shortID(p.ID()))
result := make(chan string)

errc := make(chan error)

defer close(result)

defer close(errc)

go p.reasoner.stationSearch(src, result, errc)

var station string

select {

case station = <-result:

logger.Infof("\t[%s] Nearest station found: %s", shortID(

err errc:

22

Two versions (1/2)

Simple
Two agents: bike rental and person.
One protocol used to rent a bike.

Simple proof of concept.

Complex

More complex version of the simple demo, new
agents expand the existing protocol and define
new services with new protocols.

Six agents: bike rental, person, bike station,
transport unit, university and bicycle.

Six protocols for: renting a bike, scheduling a
rental, transporting bikes, storing bikes, riding bikes
and searching for stations.

23

Two versions (2/2)

Simple

Highly deterministic: customer will always request
a bike and rental will always respond.

Variability in accepting or rejecting the price.

Complex

Possibility of adding many agents that affect the
outcome of the system interactions.

Many influential factors. Are there enough
bicycles? Will there be at a certain our? Is the
transport busy? ...

Some interactions trigger others. For example
scheduling a bike rental may trigger a bike transport
if there are currently no bikes available.

24

Design

BikeStorage {
role Bike, Station
parameter out ID key, in rentallD

Bike -> Station: dock[ID key]
Station -> Bike: release[ID, in rentallD]

BikeTransport {
role Requester, Transport
parameter out ID key, in bikeNum, in src, in dst, in datetime, out rID, out result

Requester -> Transport: request[out ID, in bikeNum, in src, in dst, in datetime]
Transport -> Requester: accept[in ID, out rlD]

Transport -> Requester: reject[in ID, out rID]

Transport -> Requester: success[in ID, in rID, out result]

Transport -> Requester: failure[in ID, in rID, out result]

25

h - e\
Results and Conclusions

Results: BSPL

README.md

Blindingly Simple Protocol Language (BSPL) Go parser.

This repository also contains interfaces for a BSPL reasoner (reason package) and an implementation of some
components of that reasoner (implementation package). This implementation is used in another project.

Modules

« parser : Standalone BSPL parser implemented using a toy lexer | wrote a while ago.
« proto : Go structures to form a BSPL protocol, e.g., Protocol , Role and Action.
« reason : Interface definition for implementing a reasoner and protocol instances.

« implementation : Draft implementation to use in another project.

Production use of this project is not advised as it is far from ready.
Other folders

« config : Contains the automaton fed to the lexer to process a BSPL protocol.

« test : Test resources.
Usage example

1. Define a valid protocol in a file with path path .

github.com/mikelsr/bspl @

package bspl vo.0.0(so0sse0) Latest
Published: Jun 18, 2020 License: MPL-2.0 Module: github.com/mikelsr/bspl

Doc Overview Subdirectories Versions Imports Imported By

Index

Index

func Compare(a, b Protocol) bool
type Action
type 10
type Instance
type Parameter
type Protocol
func Parse(in io.Reader) (Protocol, error)
type Reasoner
type Role
type Roles
type Values

func Compare

func Compare(a, b Protocol) bool
Compare two BSPL protocols

type Action

type Action = proto.Action

Action is an alias for proto.Action

Licenses

27

Results: NaHS

README.md

NaHS

Network of Autonomous and Heterogeneous Services (NaHS)

build passing’ License |MPL2:0 | Go v1.14
Modules

« events : Describes BSPL instance events according to the implementation. As of now there are three events:
o NewEvent to create an instance of a protocol.
o UpdateEvent to update an instace comparing it to a future version of it.
o DropEvent to cancel an instance for any reason.

« net : Networking components. The main structis Node . A node has a BSPL reasoner and a LibP2P host,
implementing methods and handlers to send BSPL components between network peers. Nodes discover each
other either manually or with the libp2p implementation of rendezvous (preferred) using the default bootstrap
nodes.

Other folders

- config : Contains the private key of the main network (which is public, private only limits interaction to NaHS
nodes).

- scripts : Contains a script to generate a private network key.

- test : Test resources.

github.com/mikelsr/nahs @

package nahs vo.00(cs17cof) ¢ Latest
Published: Jun 18, 2020 License: MPL-2.0 Module: github.com/mikelsr/nahs

Doc Overview Subdirectories Versions Imports Imported By Licenses
Index

Index

type Node
func MakeNode(reasoner bspl.Reasoner, sk crypto.PrivKey, options ...libp2p.Option) *Node
func NewNode(reasoner bspl.Reasoner, options ...libp2p.Option) *Node

type Node

type Node = net.Node
Node of the NaHS network.

func MakeNode

func MakeNode (reasoner bspl.Reasoner, sk crypto.PrivKey, options ...libp2p.Option) *Node
MakeNode creates a node with the specified private key so the node maintains the ID it previously had.

func NewNode

func NewNode(reasoner bspl.Reasoner, options ...libp2p.Option) *Node

NewNode creates a new NaHS node. LibP2P options can be passed to configure the node.

w
28

Results: Usage‘ ’

package main

import (
" fmt "
"OS n
"github.com/mikelsr/bspl”

func main() {
source, _ := os.0Open(path)

protocol, err := bspl.Parse(source)

if err != nil {
panic(err)

);

fmt.Println(protocol)

-

.
package main

import (
n fmt n

"github.com/mikelsr/bspl"
"github.com/mikelsr/nahs"

func main() {
var reasoner bspl.Reasoner
node := nahs.NewNode(reasoner)

fmt.Printf("Created a new NaHS node with ID:

—

%s\n", node.ID()) -

Results: Demo

Created bike with ID LLAQ (QmcalXdAC1RWfGJIvyeZ6MugBEqoDSXVgfXh3x6RUDSLLaQ)
Created bike with ID XWWJ (QmPftWe8DNkt7HGEN6kAmD6NjWM3dar7XJA6bnujgkxWwd)
Created bike with ID WEAF (QmYJb3ovv1LbAwuocv7roxP3VzTrjZZuUFJLLTgolL5weaf)
Created bike with ID FCNS (QmQFUixwJM8XychHHfPtMn509x4yLJCcZbKexkfPVnFCNs)
Created station with ID BXGE (QmRSZSGMnkbGkj9MzippGrKZoChBMdLiHGLgeQ666JIBxgE)
[BXGE] Bike LLAQ docked
[BXGE] Bike XWWJ docked
Created station with ID XUC8 (QmRcQxF3nWPEZLBNrWUoW8sWX1TpVBczEDHLtayBpmxuc8)
[Xuc8] Bike WEAF docked
[Xuc8] Bike FCNS docked
Created transport with ID PQUB (QmX1gr24SNdYwEnvR5KwvRISCShQdMSozURgyK2y81PqUB)
Created university with ID 7BTP (QmXDcZLmytcWGzciWLSHAxc5ZKTJeG1NZe4Kz8DCXd7bTp)
Created renter with ID W7GW (QmVMhuBdVxtsm3pykK4fbgtS92sLE9oAbiE1FIstKCw7gw)
Created person with ID ABZJ (QmPqcXKsudZ86Py2iFHNRfeAHK1ck19MnM3bFuqEGKABZI)
[ABZJ] Search for station
[W7GW] Send event 'update:4261' to node ABZJ (instance key: StationSearch,ID:dccd7aBa-b791-4f2a-a41f-99d7ea8575f5)
[ABZJ] Nearest station found: BXGE
[ABZJ] Sent rent request to W7GW
[W7GW] Send event 'update:D951' to node ABZJ (instance key: BikeRental,ID:7088d84b4-6817-42eb-842c-42429ebc96ee)
[ABZJ] Received offer for bike LLAQ at price: '8.83'
[ABZJ] Accepted offer for price '8.83'
[ABZJ] Bike with id LLAQ rented
[ABZJ] Waiting to discover node LLAQ
[ABZJ] Send event 'update:9585' to node W7GW (instance key: BikeRental,ID:7088d84b4-6817-42eb-842c-42429ebc96ee)
[ABZJ] Discovered LLAQ
[ABZJ] Send event 'new:BFED' to node LLAQ (instance key: BikeRide,ID:f4f48beb-3f82-4f2b-8e75-6df9744d0dcB)
[W7GW] Send event 'update:C64D' to node ABZJ (instance key: StationSearch,ID:ffBbhad9fb-158f-4bh4c-a9c2-4371ad2675a8)
[W7GW] Response from ABZJ for bike LLAQ offer: accept
[ABZJ] Nearest station found: XUC8
[ABZJ] Dropping bike LLAQ at station XUC8
[P] Requesting 2 bike(s) from W7GW to st 86-1 1 +6260 C

30

Conclusions

Project reached its goal and met the objectives.

Agents can interact by enacting protocols that describe services. Agents form a
distributed network with peer-to-peer connections.

Agents: use BSPL and NaHS packages, information driven, can be asynchronous.

It provides an initial approach to networks of autonomous and heterogeneous services.

31

-
7 o ‘ e
_ _ &- - _
Future Work

s y w

sl \-i

Future Work

Design and implement an accountability and trust system.
What happens when a node consistently breaches trust? How can other nodes know
what nodes tend to behave better? How to choose between multiple providers?

Expand the features of the networking package to make agent design easier.
Remove circular reference, provide a more intuitive way of running callback functions
when updating events.

Deploy NaHS in a real scenario.
The bicycle scenario proposed in the demo is a valid target with services such as

BilbaoBizi.

33

