
Design and Implementation of a Distributed
Network of Autonomous and Heterogeneous

Services

Student: Mikel Solabarrieta Román
Director: Diego Casado Mansilla
Degree: Computer Engineering
University of Deusto - 2020

Index
1. Introduction
2. BSPL
3. Networking
4. Demo
5. Results and Conclusions
6. Future Work
7. Questions and Answers

2

Introduction

3

Key areas (1/2)
Interaction-oriented design

Designing the system around agent
interactions.

Separates interaction from
implementation.

Information sent as messages but
interpreted as interaction events.

4

Multi-agent systems

Composed of multiple independent
agents.

Each agent has a local view of the
system.

No single agent in charge, although
control might be unevenly distributed.

Key areas (2/2)
Peer-to-peer networks

Each node of the network can act as client and server.

Each node is “equal”.

Nodes connect directly, forming a distributed network.

Networking model mirrors logic model, but can face issues such as multiple NAT layers.

5

Goal of the project
Create a network of autonomous, heterogeneous services (NaHS).

Services are offered and consumed by agents.

How agents interact is defined by protocols. Interacting is enacting a protocol.

An agent needs two things:

· Networking capabilities

· Interaction capabilities

6

Programming language
· Compiled.
· Statically typed.
· No classes
· Garbage collected.
· Native concurrency.
· Native test tools.
· Native package management.
· Pointers.
· Memory safety.

7

Blindingly Simple Protocol Language

8

What is BSPL?
Language to describe interaction protocols.

Designed with asynchrony in mind.

Contains a protocol name, roles, parameters and actions.

Causality is derived from parameters.

9

TimeTelling {
 role Consumer, Provider
 parameter out ID key, out time

 Consumer -> Provider: askTime[out ID]
 Provider -> Consumer: tellTime[in ID, out time]
}

What is BSPL?

10

TimeTelling {
 role Consumer, Provider
 parameter out ID key, out time

 Consumer -> Provider: askTime[out ID]
 Provider -> Consumer: tellTime[in ID, out time]
}

Protocol name

Roles: each one will be played
by an agent.

Parameters: information
exchanged in the interaction.

The combination of key
parameters identifies each

enactment

“Out” parameters are
generated, “in” parameters
received, “nil” parameters

ambiguous

What is BSPL?

11

TimeTelling {
 role Consumer, Provider
 parameter out ID key, out time

 Consumer -> Provider: askTime[out ID]
 Provider -> Consumer: tellTime[in ID, out time]
}

Action = source + target + message

Source: agent that started the action Target: agent affected by the action

Message: new information in the enactment

A parameter can’t be received before
being generated

The BSPL package
· proto
Types and structures to define a BPSL protocol in Go.

· parser
Converts raw protocols into the types defined by proto.

· reason
Interfaces for protocol enactments (instances) and reasoners.

· implementation
Implementation of all interfaces of reason except for the reasoner interface.

12

Parser
· Receives a raw protocol as input.

· Produces a Go representation of the protocol.

· Uses a lexer defined with a deterministic finite
state automaton.

· Validates the basic correctness of a protocol.

13

Interfaces
Enable further development while maintaining implementation ambiguity.

14

Networking

15

LibP2P
Modular network stack.

Addresses issues of peer-to-peer networking in different levels:
dialing, data transmission, identity, security...

Main implementations: JS and Go.

Host: type for network node.

Each host has a unique ID derived from its private key.

16

Discovery
Rendezvous protocol.

Rendezvous nodes as initial connections.

Nodes register and are redirected to other nodes.

Nodes can also be manually added:

nodeB.Peerstore().AddAddrs(

nodeA.ID(), nodeA.Addrs(),

peerstore.PermanentAddrTTL

)

17

Design (1/2)
The Node type provides most of the networking capabilities:

discovery, event management, private networking…

Each agent has a Node attribute.

Each node has a LibP2P Host attribute.

Node has a Reasoner attribute, specified by each agent.

Private networks: by sharing a key.

18

Design (2/2)
Events: marshalled instances that wrap interactions.

Events are sent with network streams via TCP connections.

Flexibility by providing access to the LibP2P Host.

Accessibility by not requiring the user to access it.

19

Implementation

20

Functionality is centered around Node.

Images are from the net package.

Demo

21

Implementation
· Agent = reasoner + networking
capabilities

· Each agent runs interactions as
goroutines and can therefore continue
functioning while they are processed.

· When necessary, different routines
interact using channels.

22

Two versions (1/2)
Simple

Two agents: bike rental and person.

One protocol used to rent a bike.

Simple proof of concept.

Complex

More complex version of the simple demo, new
agents expand the existing protocol and define
new services with new protocols.

Six agents: bike rental, person, bike station,
transport unit, university and bicycle.

Six protocols for: renting a bike, scheduling a
rental, transporting bikes, storing bikes, riding bikes
and searching for stations.

23

Two versions (2/2)
Simple

Highly deterministic: customer will always request
a bike and rental will always respond.

Variability in accepting or rejecting the price.

Complex

Possibility of adding many agents that affect the
outcome of the system interactions.

Many influential factors. Are there enough
bicycles? Will there be at a certain our? Is the
transport busy? …

Some interactions trigger others. For example
scheduling a bike rental may trigger a bike transport
if there are currently no bikes available.

24

Design
BikeStorage {
 role Bike, Station
 parameter out ID key, in rentalID

 Bike -> Station: dock[ID key]
 Station -> Bike: release[ID, in rentalID]
}

25

BikeTransport {
 role Requester, Transport
 parameter out ID key, in bikeNum, in src, in dst, in datetime, out rID, out result

 Requester -> Transport: request[out ID, in bikeNum, in src, in dst, in datetime]
 Transport -> Requester: accept[in ID, out rID]
 Transport -> Requester: reject[in ID, out rID]
 Transport -> Requester: success[in ID, in rID, out result]
 Transport -> Requester: failure[in ID, in rID, out result]
}

Results and Conclusions

26

Results: BSPL

27

Results: NaHS

28

Results: Usage

29

Results: Demo

30

Conclusions
Project reached its goal and met the objectives.

Agents can interact by enacting protocols that describe services. Agents form a
distributed network with peer-to-peer connections.

Agents: use BSPL and NaHS packages, information driven, can be asynchronous.

It provides an initial approach to networks of autonomous and heterogeneous services.

31

Future Work

32

Future Work
Design and implement an accountability and trust system.
What happens when a node consistently breaches trust? How can other nodes know
what nodes tend to behave better? How to choose between multiple providers?

Expand the features of the networking package to make agent design easier.
Remove circular reference, provide a more intuitive way of running callback functions
when updating events.

Deploy NaHS in a real scenario.
The bicycle scenario proposed in the demo is a valid target with services such as
BilbaoBizi.

33

Q&A

34

