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Abstract

Distributed applications present a different set of challenges from their centralized

counterparts, such as consensus, clustering, or message propagation. Wetware is

a distributed systems middleware that provides a unified solution to the most

common challenges of building distributed systems, simplifying the development

and deployment of distributed applications. Wetware can be used as a standalone

program, setting up nodes as independent processes and accessing them via object

capabilities; or it can be embedded into applications that make selective use of

its functionalities.

This thesis introduces a process executor for distributed applications as a novel

component of Wetware, providing the means to run, manage, and communicate

processes across a distributed cluster in a safe and performant manner through

object capabilities. Process execution is based on WebAssembly, a binary instruc-

tion format that natively provides process isolation, portability, and performance;

crucial characteristics of distributed processes in heterogeneous distributed sys-

tems. WebAssembly also introduces some challenges this thesis aims to solve,

namely a lack of real parallelism and limited communication with elements out-

side its sandbox. Furthermore, this thesis develops tools to manage said processes

and provide the means for inter-process communication, and demonstrates their

validity and effectiveness through the development of a real-world distributed

application that runs on a Wetware cluster through the process executor.

Next, the thesis analyzes the performance, resource usage, concurrency control

mechanisms and scalability potential of the process executor for different work-

loads. As a result, we demonstrate that the executor is capable of running mul-
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tiple processes across nodes on a Wetware cluster, with work-bound performance

akin to high-level programming languages and capable of managing IO-intensive

workloads.
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Chapter 1

Introduction

1.1 Context

A distributed system is a group of autonomous interconnected computers that,

while distinct and separated, operate together to achieve the same goal. They pro-

vide advantages over centralized applications: increased fault tolerance, reduced

tendency towards some forms of bottlenecks, excellent horizontal scalability by

adding more nodes, and benefit from concurrent application design. They also

present a unique set of challenges that their centralized counterparts might not

face: consensus [3], coordination between nodes is vital but not always simple [4],

resource sharing [5], events may need to be ordered [6], faults can be dealt with

but may require additional consideration [7], data must be kept consistent [8]

and it needs to be stored and processed in separate nodes [9]. These issues have

been studied in depth and all have open implementations of the state of the art

solutions, that developers of distributed applications then have to individually

integrate into their projects.

There has long been a global trend towards cloud computing. The industry

is moving from self-hosted servers towards reliance on cloud provider services,

usually from the Big Five [10]. This trend involves not only companies but

individuals and organizations as well [11]. It is a natural move that provides

convenience, simplicity, and economic savings but takes away control and power.

1



1.2. Motivation 1. Introduction

Cloud providers might deny or limit servicing companies or individuals for a wide

array of reasons, or have a sudden change in billing policies. Even distributed

applications are usually run in different nodes of the same cloud provider, as they

provide computing nodes all across the world and automate tasks such as load

balancing. The transition to web3 promised a step in the opposite direction by

consolidating decentralization as a pillar for online platforms and services [12]

and base it on peer-to-peer connections, but has had relatively low adoption and

even its core definition and goals change depending on the source.

Wetware [13] is an open-source tool created with the purpose of making building

and deploying peer-to-peer distributed applications easier, and allowing them to

run (almost) anywhere. It groups solutions to common distributed system prob-

lems in a single package and streamlines the deployment of nodes, developing

some of them in-house and selectively using existing ones when appropriate. One

of its core components is the result of this thesis: a process executor that enables

running isolated processes, inter-processes communication, and process manage-

ment across a whole cluster. The security and flexibility of the middleware are

complemented by the process isolation and portability provided by WebAssembly,

the language chosen for the processes of the executor.

1.2 Motivation

The author personally uses tools such as Syncthing [14] or Anytype [15] in a

daily basis, both distributed P2P applications centered around synchronization

that have most likely faced many of the issues Wetware attempts to solve. They

provide developers and users autonomy on how their software run, and where it

runs. They provide independence from centralized resources, which is one of the

main pushing factors behind this project.

In order for Wetware to work as intended, it needs a way of running and manag-

ing processes. It must be done respecting shared resources in a way that allows

the rest of the middleware to keep functioning, with as little overhead as possi-

ble. Those processes need to have access to the middleware too, and have the

means to communicate with each other. Meeting this requirement will complete

2



1.3. Goals and Contributions 1. Introduction

a fundamental part of the middleware and take it closer to being ready for adop-

tion.

Finally, while Go is not a language designed for High Performance Computing

and lacks some of the low-level tools to make the most out of the hardware

resources available; it does present a great opportunity to study and analyze how

the language, as well as other technologies involved in this project, behave and

can be used to maximize performance in HPC.

1.3 Goals and Contributions

This work consists of the design and development of a process executor

capable of running and managing programs written in WebAssembly

and expose its functionality through object capabilities. The executor

is to be integrated into the wider Wetware middleware, as well as validated and

benchmarked thorough the development the implementation of a real application.

This thesis takes advantage of the state of the art of its two main programming

languages to enable the use of Cap’n Proto capabilities from WebAssembly pro-

cesses. Lastly, it demonstrates some of the benefits of this Wetware executor by

integrating a consensus algorithm into a real application.

To the best of our knowledge, Wetware is unique on its field and is marginally

different from other distributed system middleware in the variety of services it

provides as well as its flexibility. The executor is a novel contribution into such a

middleware, parting from an isolated process execution environment, running on

a runtime particularly well fit for concurrent applications and exposed through

an object capability.

1.4 Outline

To start off, chapter 2 will provide the background of this project, which lay the

technological foundation for the development of the thesis by shedding a light

over the different concepts and tools applied on this project. Chapter 3 contains

the specification of the technical objectives and the requirements of this project,

3



1.4. Outline 1. Introduction

as well as laying out the work plan that was followed. Chapter 4 explains the vari-

ous methodologies used during the thesis development, explaining communication

frequency and channels with the thesis director, Wetware team and others; as well

as contingency plans, development and testing. The latter two are explored in

depth in chapter 5, which contains detailed information on the development, test-

ing and verification of each of the software components that were contributed by

this thesis. Chapter 6 evaluates the validity and performance of the development,

analyzing the results and identifying potential improvement routes. Chapter 7

sums up the rest of the document and provides closing thoughts. Finally, ap-

pendix A contains component diagrams that reflect parts of the final codebase

and are useful as complementary resources when studying segments of code.

4



Chapter 2

Background

This chapter provides the background on concepts and technologies of special

relevance for this thesis, laying the grounds for the project, its development, and

evaluation.

2.1 IaaS and PaaS

Infrastructure as a Service and Platform as a Service are two core concepts of

modern cloud computing. IaaS refers to the offering of computing, storage, and

networking resources as a service, usually based on charging the client propor-

tionally to the amount of resources they use. IaaS is usually provided through

some level of virtualization or containerization, increasing deployment flexibility,

allowing fine-grain control and accountability of resource usage, as well as provid-

ing additional security and stability over bare-metal applications or applications

running directly on the OS. IaaS conveniently provides high-performant infras-

tructure, transparent vertical and horizontal scalability, built-in security, data

locality with servers spread across multiple locations, and potential cost reduc-

tions compared to setting up one’s own infrastructure. These factors have made

it appealing for companies, organizations, and individuals to migrate or deploy

their production environments to cloud computing: cloud provider’s hardware

through IaaS. This appeal has marked a global trend for over a decade, which

5



2.2. Wetware 2. Background

resulted in IaaS public cloud services reaching a market cap of $120.3 billion in

2023 [16]. The biggest IaaS providers currently include Amazon Web Services,

Microsoft Azure, Google Cloud, Alibaba Elastic Compute Service, Digital Ocean,

and Linode.

Platform as a Service is a level of abstraction over IaaS, where a software service

is offered with abstraction from the hardware it is running on. Web page hosting

is arguably one of the clearer examples. Another example more relevant to this

thesis is providing middleware as a service such as the messaging service provided

by AWS. Middleware, in this case, is defined as a software layer between the

operating system and the application, abstracting the application from interacting

with the operating system and the hardware.

While undoubtedly useful, both IaaS and PaaS do have drawbacks. Service

providers can discriminate who to provide their services and for what price. They

can stop providing service at any point, potentially leaving the most dependent

users with no infrastructure whatsoever. Overuse of the resources can result in an

unexpectedly inflated bill. Users have to trust their provider to run their software

unaltered. Lastly, providers know what software is being executed. All these can

be comprised of two terms: control and privacy.

Many modern applications require some level of distribution and process manage-

ment, often made easier through the use of IaaS and PaaS. The next section will

delve into Wetware, a project with the objective of facilitating those two features

to developers through a middleware that can be easily deployed anywhere.

2.2 Wetware

Wetware is a modular distributed systems middleware intended for writing secure,

scalable, and performant distributed applications [13]. Developing distributed

applications often requires an investment of resources into integrating some dis-

tribution features, which often revolve around communication, clustering, and or-

chestration. Wetware provides features out of the box so by just importing them

into an application they are ready to be used. Specifically, Wetware provides the
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following explicit features: peer discovery, clustering, inter-process communica-

tion, storage, message propagation, a service registry, and, as of now, process

execution and management. Under the hood, it also takes care of tasks such as

content routing or self-optimizing overlay networks.

These tools are exposed through object capabilities: transferable rights to per-

form operations on an object. Objects, in this context, refer to every accessible

Wetware component: ranging from an entire node to a communication chan-

nel. Processes interact with Wetware through Cap’n Proto, an object capability

protocol, and remote-procedure calls. Internally, Wetware is designed with sep-

aration of concerns in mind. Different feature groups are provided by different

components, implemented as Go structs. As an example, dialing is performed

by a Dialer component, and peer-to-peer connections are managed by a Host

component. This thesis introduces the Executor component: a structure capable

of receiving, running, and managing WASM processes.

Generally, processes will interact with Wetware through an object capability rep-

resenting a node. A node is a unitary process with all the necessary services and

components to provide every aforementioned feature. It exposes these features

through so-called “node syscalls”, RPC calls that perform one action and return

the result in the form of a capability. Let’s go over some examples. The View

call will return the local view of a node in the form of a list of object capabilities,

each representing a different node. The Exec call will create a new process and

give the caller access to it through a Process capability, which can then be used

to manage the newly created process. Pub will publish a message, and Sub will

wait until it receives a message. Figure 2.1 illustrates how processes can inter-

act with a Wetware node, whether they are running on the same machine or a

different one. Figure 2.2 shows an example of process A sending process B a

message through Wetware’s publish/subscribe service. The node can then allow

them to interact with the whole cluster. It is also possible to embed Wetware

into applications, by importing the library into a project and initializing features

from within.

Having all of Wetware’s features exposed through capabilities has two main ad-

vantages:

7
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Figure 2.1: How processes use Wetware

Figure 2.2: Publish/subscribe example with Wetware

1. They can be used from anywhere. Any holder of the capabilities can make

use of them.

2. Any programming language with a Cap’n Proto implementation can use

them.

Combining Wetware’s portability and accessibility makes a more flexible tool that

will hopefully make the lives of distributed application developers easier. This

accessibility is an excellent fit for one of Wetware’s main objectives: portabil-

ity. Cluster may contain heterogeneous members, running on different operating

systems and architectures. Wetware is designed to run on POSIX-compliant op-

erating systems; such as Linux, BSD, macOS, or Plan9.

Applications built with Wetware have, by default, unstructured decentraliza-

tion [17] due to how Wetware clusters are formed. Nodes have no guaranteed

permanence in the network, fixed connection topologies, or neighborship rela-

tions. It is still possible, however, to build dependable applications by handling

resiliency at an application layer, which will be explored in section 5.7.6. Nodes

communicate through peer-to-peer connections established and managed through
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LibP2P libraries. They may use different transport protocols but usually default

to TCP and QUIC.

Wetware is an open-source project currently in its early stages, developed by a

few volunteers, and licensed under both the Apache and MIT licenses. Wetware

is written in Go, favors portability, and is designed in a modular manner so that

users can choose which of its components to use.

In summary, Wetware is a portable and accessible distributed systems middle-

ware, which natively provides core components of distributed applications. This

thesis develops process execution features for the middleware, and tests those

features through the implementation of real, distributed applications.

2.3 Distributed Systems

As mentioned in the introductory chapter, a distributed system is a group of au-

tonomous interconnected computers that, while distinct and separated, operate

together to achieve the same goal. Distributed systems may have different degrees

of decentralization depending on how nodes connect to each other, with more cen-

tralized (figure 2.3a) or decentralized (figure 2.3b) network layouts. Distributed

applications also have varying degrees of centralization depending on their design.

Some may distribute work and centralize control, while others might have fully de-

centralized logic. On the same topic, distributed systems can be categorized as at

least the following types: client/server [18], multi-tier [19] and peer-to-peer [20].

While Wetware provides the tools to develop the latter, it is possible to have

internal P2P systems exposed through, for example, a client/server model.
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(a) Lower decentralization (b) Higher decentralization

Figure 2.3: Decentralization levels

Distributed systems come with their own set of benefits and disadvantages. Ben-

efits include, among others:

• High horizontal scalability : additional workload can be accommodated by

simply adding more nodes.

• High availability : data and resources can be found in multiple nodes.

• Concurrency : distributed applications are concurrent in nature.

• Fault tolerance: there is no central point of failure.

• Load balancing : nodes might distribute load among them to avoid over-

working any one of them.

• Flexibility : nodes can be heterogeneous and run in different environments.

• Locality : data can be in the node closest to where it is needed.

While disadvantages include:

• Complexity : developing distributed applications is generally a more com-

plex task than developing centralized applications.

• Consistency : data may need to be kept consistent across nodes.

• Networking issues : overhead, latency and network failures can have a very

negative impact.

10



2.3. Distributed Systems 2. Background

• Consensus : agreeing on values can be hard, and consensus algorithms can

be complex.

• Failures : node fault tolerance bring complex failure scenarios.

• Communication bottlenecks : message passing through a distributed system

is generally slower than sharing memory.

Distributed Systems are a very relevant field of computer science and they are

present in most of the services we use day to day, from chatting applications, to

banking systems and supercomputer systems. Peer-to-peer distributed systems

are arguably less common in commercial applications but are nonetheless invalu-

able and present in many other real-world applications: file sharing, IoT devices,

Virtual Private Networks... The latter are even one of the inspirations behind

the creation of Wetware [13]. Peer-to-peer has its pros and cons, but is generally

a fit choice for systems with a high degree of decentralization. Wetware handles

P2P connections through the LibP2P networking stack.

2.3.1 LibP2P

LibP2P is a modular network stack. The modularity is due to the project being

a combination of specifications, protocols, and libraries that form LibP2P as a

whole. One of its main objectives is to provide a set of P2P functionalities that

can be cleanly separated so that developers use only what they require. It is fully

or partially implemented in many languages, including but not limited to Go,

JavaScript, Rust, C++, Haskell, Java, and Python. It was originally a part of

IPFS [21] but eventually became a standalone project.

LibP2P nodes use multiaddresses, which contain information about the network

addresses and protocols. An example of a multiaddress is /ipv6/::1/tcp/4242. A

node listening in that multiaddress is expecting connections to come from the ::1

loopback address and TCP connections to go to the 4242 port.

Wetware makes use of go-libp2p, the de facto LibP2P implementation in Go.

It has ample documentation for each of its many components: transports, peer

identity, content routing, security... It handles multiple communication protocols
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in a single established connection through stream multiplexing and supports a

variety of transport protocols. Additionally, it natively provides techniques such

as NAT hole punching, which will benefit Wetware’s portability goals.

2.3.2 Consensus

Consensus comes out often when discussing potential requirements of Wetware

users writing distributed applications: be it a distributed database, process co-

ordination, fault tolerance, result propagation, etc. Integrating consensus algo-

rithms into a program might take more low-level tweaking than other Wetware

features, for that reason it is implemented at an application level and needs to

be fully compatible with Wetware processes. While designing a consensus algo-

rithm is outside the scope of this thesis, proving that consensus algorithms can

be implemented and run on Wetware processes is not. Such demonstration must

meet the following requirements:

• WASM compatibility : the consensus algorithm implementation needs to

have WASM as a compilation target.

• Cap’n Proto as a transport : peers must communicate by sending messages

through capnp RPCs.

• Asynchrony : the consensus algorithm might run in the foreground or back-

ground of processes, blocking execution only when explicitly indicated by

application developers.

• Performance: The less time is spent maintaining a replicated log and man-

aging the cluster, the better. Asynchrony is but one of the factors that will

help achieve this.

• Stability : Wetware environments are not necessarily stable or fault tolerant.

Peers need methods of reconnecting with one another, which need to be

implemented for the Wetware middleware.
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2.3.2.1 Raft

Raft is arguably the standard for distributed consensus algorithms since its pub-

lication on the notable article ”In Search of an Understandable Consensus Algo-

rithm” [3], when it took the spotlight from the Paxos [22] algorithm family that

held the standard for years before that and are still widely used [23]. Its main

advantage over Paxos is its simplicity, proven correctness, and completeness, e.g.

by defining how a re-joining peer might catch up with the rest of peers. It was

designed with tolerance to network and peer failure in mind.

Consensus is split into two main phases: leader election and log replication. The

cluster has one leader at a time, chosen among peers of the cluster. Elections are

held periodically, leadership periods are split into terms that end when the leader

loses consensus or disconnects from the network. This leader is the only node

authorized to operate on the log, and only by means of appending. Although

it may cause bottlenecks for write-heavy applications with distributed writers

or read-heavy applications that always require the latest value, having a single

write-point ensures log integrity.

This is where log replication comes in. The append-only log is then replicated

between peers, who can propose new values that are then voted, accepted or

rejected, and appended to the log by the leader if accepted. The replication

phase goes on until the leadership term ends due to any of the aforementioned

reasons. The full Raft specification [3] defines the behavior for all considered

scenarios.

After examining multiple Raft implementations, etcd’s Raft was selected [24]

as the main building block for the Raft object capability developed during the

project and described in section 5.7.5. Etcd is a distributed key-value storage

written in Go and used in projects such as Kubernetes. The three main char-

acteristics that made it a good fit for this master’s thesis are its modularity,

transport agnosticism, and storage agnosticism. All three of them are essential

for WASM compatibility.

Modularity refers to how the source code is structured in the project. If a Go

module includes any code that can’t be compiled to WASM, e.g. code that
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performs system calls unavailable in the WASM runtime, the whole module be-

comes unusable from WASM. As an example, some of the libraries tested during

the development of this project, and even Wetware modules, bundled WASM-

compatible features and WASM-incompatible code, e.g. setting up an HTTP

server listening on a TCP socket, in the same package. That package could not

be compiled to WASM. Etcd’s Raft implementation has very granular packages,

and the core Raft functionality fully supports WASM as a compilation target.

Transport and storage agnosticism is also crucial due to WASM process isolation,

which is further developed in chapter 2.5.2 and section 5.3.

The modular design of etcd’s Raft combined with the clearly defined interfaces

for the unimplemented parts, such as the transport, makes it relatively straight-

forward to integrate it with the different technologies used in this thesis. It does,

however, come with some drawbacks.

In the first place, assembling is required. The modules are there, but tying them

all together is up to the user. The main process loop needs to be implemented and

requires some attention to do it properly. As a counter-argument, etcd provides

ample documentation and its extended usage has created a multitude of examples.

In the second place, etcd Raft’s performance can degrade on certain networking

environments [25], even if the main cause is Raft’s strong leadership design. This

might mean some very specific Wetware use cases require the integration of other

consensus algorithms, which will benefit from the knowledge gained from the Raft

integration.

In summary, the benefits of both Raft and etcd’s implementation far out-weight

the drawbacks, mainly simplicity, flexibility, etcd Raft’s transport-agnosticism,

having been heavily tested in real-world applications and the ample documenta-

tion about them.

2.4 Remote Procedure Calls

Remote Procedure Calls, or RPCs, are a form of inter-process communication

widely used in distributed computing to cause a procedure to run on a remote
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space, such as a different node in a cluster. RPC providers usually follow a

client/server approach where the caller (client) holds a stub representing the

callee (server) and calls its methods as if it were an object. To illustrate, a node

A might cause a node B to perform the doThing procedure by holding a stub

b of B and calling it as follows: b.doThing(). The most widely extended RPC

framework is arguably gRPC [26], focused on high performance and based on

the popular Protocol Buffers [27]. Wetware uses a successor of Protocol Buffers:

Cap’n Proto.

2.4.1 Cap’n Proto

Cap’n Proto is an open-source Remote Procedure Call framework, as well as a

serialization format. Its main focus is performance, as it was designed to be

used for a wide range of applications; from communication between members of

distributed systems to inter-process communication. This high performance focus

shows in many features, including but not limited to:

• Zero-copy deserialization: It allows serialized data to be used directly from

its serialized representation without the need for unmarshalling it into a

data structure.

• Incremental reads : It is not necessary to have received a full Cap’n Proto

message to be able to start reading it.

• Random access : Any of the fields of a message can be read without going

through the previous messages.

• Inter-process communication: capabilities shared by two processes running

on the same machine may use it to communicate by sharing memory.

• Time travel promise pipelining : results of a RPC can be used before the

request has been sent, through result promises. Illustrated in figure 2.4. If

A wants to get C from B, it can start a B RPC to retrieve C and begin

it before the call even reaches B. Results might also be received in any

order, although they will be perceived by the receiver as having arrived in
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order [28]. Both these factors are beneficial not only to performance but

also to potentially deal with network bandwidth or latency issues.

Figure 2.4: Promise pipelining (source: [1])

Cap’n Proto is based on object capabilities: transferable rights to perform oper-

ations on an object. The object capabilities security model is based on references

to objects through which actions can be performed. As an example, an actor A

exposes two methods through a capability: sendMessage to receive messages, and

start to start some arbitrary functionality. Any actor with a capability holding

a reference to A can perform any of these actions: send a message to A, or make

A start some action. In the object capabilities security model, objects can only

be interacted with through messages sent on references. These references can be

obtained in one of the following four ways:

1. Initialization: Actor A already holds a reference to capability B.

2. Parenthood: Whenever actor A creates an object B, it gets a reference to

it.

3. Endowment: Whenever actor A creates an object B, it can endow it any of

the references it holds, similar to initialization.

4. Introduction: If actor A holds a reference to objects B and C, it can send

the reference to either of them to the other one through a message.
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The Cap’n Proto communication and serialization specification is language ag-

nostic, which is in great interest of Wetware as it favors portability. Its schema

language is designed with extensibility in mind, allowing schemes to evolve over

time while maintaining backward compatibility. It was created by Kenton Varda,

who was the main author of protobuff v2. Cap’n Proto is a CPU-bound proto-

col, making it a great fit for WebAssembly which at the moment has no official

support for hardware acceleration. Used mainly in Distributed Computing use

cases by companies like Cloudflare and Sandstorm. [29]. Its most widely used

implementation, in C++, is developed and maintained mostly by Cloudfare [30].

It supports both packed and binary encoding, packed being the best performing

one in most cases [31]. Internally, Cap’n Proto uses what it calls “The Four Ta-

bles” to manage references and inter-VAT connections [32], having four separate

tables (Questions, Answers, Imports and Exports) per remote VAT.

2.5 Programming languages

This thesis is built upon two programming languages: Go and WebAssembly.

This section will go over the two, underlining their most relevant characteristics

and how they relate to each other.

2.5.1 Go

Go is a multi-paradigm high-level programming language, developed by Google

and originally designed by Rob Pike, Robert Griesemer, and Ken Thompson. It is

statically typed, imperative, garbage-collected, and has memory-safety features.

Go has built-in dependency management and a suite of tools for testing and pro-

filing. Go has manual memory allocation, and provides some level of memory

management isolated from the garbage collector through arenas. It has a syntax

somewhat similar to C, and natively supports a wide array of operating systems

and architectures, listed in table 2.1. Go also supports cross-compilation, making

it easy to generate binaries for multiple platforms from a single source. In addi-

tion to the de facto native compiler, gccgo, gollvm and TinyGo are also widely

extended. The latter, TinyGo, was initially used in this thesis to generate WASM
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Architecture

386 AMD64 ARM RISC-V WASM others

Operating System 32b 64b 32b 64b 64b 64b 64b

AIX no no no no no no ∗1

Android yes yes yes yes no no no

Darwin no yes no yes no no no

Dragonfly no yes no no no no no

FreeBSD yes yes yes yes yes no no

illumos no yes no no no no no

iOS no yes no yes no no no

JavaScript⋄ no no no no no yes no

Linux yes yes yes yes yes no ∗2

NetBSD yes yes yes yes no no no

OpenBSD yes yes yes yes no no no

Plan9 yes yes yes no no no no

Solaris no yes no no no no no

WASIP1⋄ no no no no no yes no

Windows yes yes yes yes no no no

∗1 PPC(64b)

∗2 Loong(64b),MIPS(32b,64b,LE&BE),PPC(32b,64b),S390X

Table 2.1: Operating systems and processor architectures supported by Go

bytecode from Go sources due to its focus on embedded devices and WASM. It

was dropped somewhere along the development process in favor of Go’s native

compiler for technical reasons, explained in section 5.3.1.

Note that the “architectures” listed in the official Go documentation also refer to

instruction sets, and “Operating Systems” refer to runtimes on top of operating

systems, marked with ⋄. Go is often used for distributed application development

for both its performance and its built-in concurrency design due to the concurrent

nature of distributed applications.

Go’s concurrency model is a natural match for Wetware’s heavily asynchronous
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code base, has low code complexity without compromising performance, natively

supports WASM as a compilation target, and generates a single, statically linked,

binary file. The last point, combined with the wide range of architectures Go

supports, makes Wetware node deployment simple.

This thesis was started using the latest available Go version: 1.20. It then transi-

tioned to 1.21 while the version was still in development before its stable release

on August 2023.

2.5.1.1 Concurrency in Go

Figure 2.5: Go concurrency example code and flow diagram

Go supports concurrency through goroutines, channels, selects, and other more

traditional tools such as locks. Section 5.1.3 goes over the Go scheduler and the

potential performance impact of each of these tools, while this section focuses on

going over the basic features and syntax. Goroutines are effectively lightweight

threads managed by the Go runtime. They are relatively cheap to create and

run on a CSP-like model. Goroutines communicate through channels, which are

message-passing interfaces.

Don’t communicate by sharing memory; share memory by communi-

cating.

Rob Pike
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Figure 2.5 contains an example of a short Go program of the main goroutine

spawning a new goroutine to run the a function, and receiving a message from

it through a channel. Channels can be either buffered or non-buffered. Buffered

channels won’t block the execution of the reader or writer while the channel is

not empty or full, respectively. Unbuffered channels will block until the reader

and writer are both ready. The example provided in figure 2.5 has an unbuffered

channel. Buffered channels are created with make(chan <type>, <buffer size>).

Concurrent Go applications usually employ the select keyword, an asynchronous

analog to switch. The example shown in listing 2.1 waits for the first of the cases

to happen: either a message will be received through the channel, the timeout

will expire or the context will be canceled. The WebAssembly runtime used in

this thesis binds processes to contexts this way, stopping WASM processes when

the context is canceled.

1 someChannel := make(chan struct {})

2 ...

3 select {

4 case <- someChannel:

5 // message arrived

6 case <- time.After (30 * time.Second):

7 case <- ctx.Done():

8 // message didn’t arrive

9 }

Listing 2.1: Select usage example

Lastly, Go functions often receive a context as their first argument, of type context

.Context. The context is not only useful for passing information to newly created

goroutines, but is an elegant way of orchestrating the stop of multiple goroutines

in different execution stages. The example of listing 2.1 shows a goroutine waiting,

among other things, for its context to be canceled. The context cancellation

will have originated on another goroutine, for example in the main goroutine

due to a keyboard interrupt. Contexts will be present in many of the listings

throughout this document. As the Go saying says: “context should flow through

your application”.
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2.5.1.2 From Go to WebAssembly

Go allows choosing WebAssembly as its compilation target. The source code is

embedded with the garbage collector and the runtime scheduler to form a sin-

gle WASM bytecode file interpretable by any WebAssembly runtime. TinyGo

allows the option of configuring the scheduler that will be embedded into the

WebAssembly, but standard Go supports no such feature. This somewhat lim-

its our performance tuning options but is worth it overall. Go sources can be

compiled into WASM through the following command: env GOOS=wasip1 GOARCH=

wasm go build -o main.wasm main.go.

2.5.2 WebAssembly

WebAssembly, or WASM, is a programming language created in 2015 as a means

to provide fast, portable low-level code on the Web [33]. More accurately, it is

a portable intermediate code format that is then executed by a WebAssembly

runtime. While it was originally intended to run only in web browsers, it was

quickly adopted outside that use case for its portability and its capacity to provide

near-native performance [34], even if it has higher prediction misses and cache

pressure than native languages [35].

WASM is commonly a compilation target for other programming languages such

as C, Rust, or Go. Languages with lightweight runtimes tend to provide the

best performance when compiled to WASM [36]. WASM programs are compiled

and loaded into the runtime as modules, where they can import functions from

other WebAssembly modules; even if they were originally written in a different

programming language. The WebAssembly runtime can also expose so-called

“host functions”: functions that when called by the WASM guest, are performed

by the host. There are multiple WebAssembly runtimes, implemented in different

languages and with different design considerations. Any one of them should be

able to run any WASM program as long as both meet the standard specification.

Wetware uses Wazero, a zero-dependency runtime, as its WASM runtime. Figure

2.6 illustrates an example of programs written in multiple program languages

that, once compiled to WASM, can be run by any WebAssembly runtime. These
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runtimes can also run on the operating systems of their choice, potentially making

WebAssembly an extremely portable language.

Figure 2.6: WASM component hierarchy

WebAssembly processes are single-threaded and support no real parallelism, al-

though this might change as the standard of one of its components, WASI, evolves.

Wetware brings parallelism into its WASM runtime by allowing running processes

to create other processes that can run in parallel to it. Scheduling is usually em-

bedded into the WASM bytecode by the compiler, leaving concurrency support

up to the source language. Some compilers such as TinyGo allow specifying what

scheduling strategy to use for compilation. Garbage collection is also embedded

into the WASM target. WASM doesn’t support hardware acceleration, but there

are examples of runtimes purposely breaking isolation to use GPU acceleration

in a WASM application [37].

The memory of a WASM process is represented as a resizeable byte array. The

memory is split into pages, each one of 64KiB. Processes can grow their memory

22



2.5. Programming languages 2. Background

by growing their number of pages, but can never access memory outside those

pages. This isolates the process and prevents unauthorized access or resource

utilization. This memory is disjoint from user space, the runtime engine, or the

execution stack, keeping the process from jumping to inaccessible locations. The

memory array is initialized by the WASM runtime before the process starts, and

freed after the process ends. From the perspective of the OS, the memory of

the WASM process is a subset of the memory of the program containing the

runtime.

The effectiveness of the process isolation depends on the correct implementation of

specific runtimes. If done incorrectly, not a remote possibility for such a complex

specification, processes can escape the sandboxing and perform attacks such as

stack overflow attacks, as demonstrated in [38].

WebAssembly is neither just for the web nor assembly code, but provides built-in

isolation, close to native performance, and a very high degree of both portability

and flexibility; making it a great fit as the programming language for distributed

systems built with Wetware.

To further illustrate the specific use case of Go and WASM in this project: Go

source code has to go through several steps until it can be run as a WASM process.

Figure 2.7 enumerates the states the program goes through, as well as the action

that transitions it from one state into the next. Different WASM runtimes and

Go compilers might produce slight variations, the figure represents the process

using Go’s native compiler and the Wazero WASM runtime.

Figure 2.7: Steps to go from Go source to running WASM guest process
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As a closing note, one of the objectives of this project is to allow WASM pro-

cesses to interact with object capabilities the same way OS-level processes do

(figure 2.1). This will imply breaking the sandboxing and considering its possible

effects.

WASM provides built-in process isolation, with very granular control over the re-

sources granted to the process, potentially high performance, and extreme flexibil-

ity for Wetware users. Combined with Object Capabilities, Wetware applications

can be written in any programming language that has WASM as a compilation

target and has Cap’n Proto support.

2.5.2.1 WASI

The WebAssembly System Interface, or WASI, is a specification with the goal of

enabling WASM guest processes to interact with elements outside their sandbox,

e.g. sockets, file systems...

WithoutWASI, WASM processes have no defined way of performing asynchronous

operations, which could potentially lead to WASM runtimes designing and im-

plementing their own without standardization, breaking one of WebAssembly’s

main advantages: portability. WASI is still under development and might be

subject to change at any time, with the current version often being referred to as

WASI Preview 1 or WASIP1. WASI exposes the aforementioned features through

a POSIX-like API, often abstracting them from the application and providing an

experience akin to native execution.

2.5.2.2 Wazero

Wazero [39] is a zero-dependency WASM compiler and runtime written in Go.

No external dependencies means no usage of Cgo, a Foreign Function Interface

(FFI) that allows calling C functions from Go code. Cgo is usually used to imple-

ment performance-demanding functions that benefit from manual memory man-

agement and low-level control. Cgo can provide better or worse performance de-

pending on its specific use, but it does limit portability and cross-compilation [40].

24



2.5. Programming languages 2. Background

By not relying on Cgo, Wazero can be statically linked and produce a clean bi-

nary, something that has proven to be a challenge with FFI. Statically linked

programs are generally easier to deploy, which is one of the main requirements of

the wider Wetware project.

The Wazero compilation engine implements its own assembler, which allows par-

allelization of WebAssembly compilation, something the WebAssembly binary is

optimized for [41]. Assembled code is then executed as native Go code, and is

protected against asynchronous preemption of the WASM program by another

goroutine. It does so by grouping instructions as Go Assembler functions, which

are considered unsafe to preempt by the Go runtime as of Go 1.20 [41].

Many of Wazero’s features are exposed as a Go interface. As an example, WASM

guests can be granted access to a file system. Said file system is in truth a Go in-

terface with file system access syscalls mapped to its methods in the guest. When

creating a WASM guest process in Wazero, users have the option of giving it a file

system through the WithFS(fs.FS) option. fs.FS is an interface with methods such

as OpenFile(path string, flag Oflag, perm fs.FileMode) (File, Errno) mapped to

their respective syscalls, in this case sys_open.

The Wazero project has a very active community and open communication with

the development team through Slack channels. It’s open-sourced, hosted on

GitHub, and allows for both open discussion and submission of pull requests.

The team has proven to act fast upon found issues, which ended up being vital

for this thesis as explained in section 5.3. It is also vital for fixing potential secu-

rity vulnerabilities that may allow processes to break their isolation or exploit the

runtime in any way. Many of the WASI features for Wazero are being developed

in a separate repository [42] as an extension to Wazero, while some vital features

are integrated into the main repository.

Ironically for the context of this thesis, Wazero generally performs worse in per-

formance benchmarks regarding execution time when compared to the rest of

the state-of-the-art [43]. The tests were performed in x86 architectures, and the

source speculates on the potential for better results on ARM architectures. It’s
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worth noting that the Wazero team has recently shifted their focus towards per-

formance, and that behind our suspected reasons for the lack of performance there

are relevant advantages for Wetware. The two main potential factors are:

• No dependencies. There is a choice to be made about performance: on

one hand Go is generally slower than C. On the other hand, using C from

Go implies careful usage of FFI and it will introduce some overhead [44].

Wazero opts for tackling the former and aiming for the most performant

Go code while abstaining from using Cgo for external function usage [45].

• Maturity. Wazero is still in its early stages, thus there is potential for

significant performance improvements. In fact, its first official release was on

September 1, 2022: slightly more than a year before this thesis’ finalization.

The release notes of the latest versions as of September 12, 2023, show

performance as one of the focal points.

2.6 State of the Art

There are some programs and middlewares that can be compared to Wetware

and the executor developed in this thesis, if only in feature subsets.

CORBA [46] is a standard with the purpose of facilitating communication and col-

laboration between processes distributed across networks and running on hetero-

geneous hardware and operative systems, through an object-oriented approach [47].

It shares its purpose with some of Wetware’s components. It also shares the pur-

pose of running on heterogeneous language, as well as the independence from

programming languages which it achieves through specification, while Wetware

does it through object capabilities.

Boinc [48] allows individuals to donate the computing power of their devices to

research projects, creating a centralized but distributed application with a cen-

tral control point but distributed worker nodes. It is a middleware for volunteer

computing, arguably one of the most used distributed system-related middle-

ware. The Ethereum Virtual Machine is a set of distributed clients acting as
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a virtual machine to execute programs defined on its own programming lan-

guage [49]. Boinc offers a subset of the capabilities Wetware intends to offer,

and the Ethereum implementations also pack some of the features in some cases.

They are, nevertheless much more specific, lacking accessibility and requiring a

harder integration process for a fraction of the benefits.

Sledge [50] is an edge computing middleware that provides a WASM process

executor, and is perhaps the one that comes closest to what this thesis is trying to

achieve. Yet, the two are fundamentally different and only coincide in supervising

process execution as well as host-guest communication. Sledge is optimized for

bursty client rates and short-lived computations. Contrary to Wetware, which

delegates scheduling to Go and Wazero, Sledge implements its own runtime and

has fine-grain control over the scheduling.

Suborbital’s Sat [51] is a WASM process executor based onWasmtime, WasmEdge,

and Wasmer WebAssembly runtimes. Sat is designed for edge computing and

gives the user the option of using either of the three aforementioned runtimes.

Their E2 Core [52] also contains WASM execution capabilities, for processes

focused on ETL and application plugins. WaPC [53] is a protocol for communi-

cating in and out of WebAssembly, which proved to be one of the main challenges

for the development of this thesis.

Lastly, Erlang’s BEAM provides many of the process management features Wet-

ware aims to provide [54], as well as being able to create distributed Erlang

systems through various communicating runtimes. These distributed systems

support passing messages between processes on different nodes, one of the key

Wetware features. Erlang provides process linking and monitoring across dis-

tributed runtimes [55] [56], a feature also implemented in this thesis. Imple-

mentations are radically different, as the features in this project were designed

around object capabilities and other Wetware functionalities. Furthermore, we

provide the means to use these features from any programming language that

supports WebAssembly is a compilation target and has a Cap’n Proto implemen-

tation.
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The idea of using Cap’n Proto in WebAssembly has been proposed by capnp’s

creator [57] and seems to have been demonstrated earlier [58], but to the best of

our knowledge this thesis is the first application to integrate both into a practical

use case. The novelty of the involved technologies is made more apparent as

some of the features of both Go and Wazero were being developed parallel to this

project and were integrated in its intermediate stages.
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Chapter 3

Objectives and Planning

The project was planned around a set of objectives, which are listed in this chapter

followed by an overview of the work plan.

3.1 Objectives

This section lists the objectives of the project. Objectives (O) may have func-

tional (R) and non-functional (NR) requirements.

O1 Create a WASM process executor (E) based on the Wazero runtime.

O1.R1 E must run processes that comply with the WASM and WASI speci-

fications.

O1.R2 E must receive WASM bytecode and output a Process object capabil-

ity.

O1.R3 E must have a minimal CPU footprint when idle.

O1.R4 E must keep functioning when WASM processes fail.

O1.R5 E must keep track of process hierarchy.

29



3.1. Objectives 3. Objectives and Planning

O1.R6 E must implement the following process management features and

expose them through the Process object capability:

O1.R6.1 Stop a process.

O1.R6.2 Link two processes: if either ends, so will the other.

O1.R6.3 Monitor a process: the monitor will be notified when a process

ends.

O1.R6.4 List all running processes.

O1.NR1 The code style must be in line with the wider Wetware project.

O1.NR2 Methods and structures should be private unless there is a reason not

to.

O1.NR3 CLI output must be clean.

O1.NR4 The code must be documented.

O2 Expose the executor through an object capability.

O2.R1 An Executor capability must contain a method that receives WASM

bytecode and outputs.

O2.R2 A Process capability must give access to process management features,

with the exception ofO1.R6.4 which will be provided by the executor.

O3 Integrate the executor into Wetware.

O3.R1 Wetware nodes must initialize an executor when they are created.

O3.R2 Wetware nodes must expose their executors through an Executor method

in the object capabilities of the nodes.

O3.R3 A new CLI command must be created to allow executing a program

from a WASM file or byte stream, in an executor.
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O3.NR1 There must be wrapper methods to abstract users from direct capa-

bility usage.

O3.NR2 Log output format must be consistent with the output of other Wet-

ware components.

O4 Validate the executor through a real application.

O4.R1 The application must be a distributed web crawler C.

O4.R2 C must have a distributed log to agree on visited pages.

O4.R3 C must crawl real pages.

O4.R4 C must store its output in a database.

O5 Analyze the executor performance and scalability.

O5.R1 A basic work-bound application must be created to test work-bound

scalability.

O5.R2 A strong scalability analysis must be performed.

O5.R3 Performance and concurrency must be characterized.

O5.NR1 Executor profiling, along with O5.R2 and O5.R3 should be consid-

ered to improve executor performance.

O6 Create a Raft library (RL) for the processes that run in the executor. Be-

sides an objective, it is also a dependency of O4.R2.

O6.R1 RL must be a valid compilation target for WASM.

O6.R2 RL must use be based on Cap’n Proto.

O6.R3 RL must allow configuring hooks for when a new value is received.

O6.R3.1 RL must use object capabilities as its high-level transport.
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O6.R3.2 RL must expose Raft functionality through a object capabilities.

O6.NR1 It should be based on an existing implementation.

3.2 Work Plan

The thesis has been developed alongside a full-time job, with most of the work

being carried out as daily part-time sessions complemented by full-time sessions

on the weekends.

The work plan, laid out in figure 3.1, is as follows. The initial steps involve re-

searching the state of the art, which tools would be best suited for the project, and

how they might be used. Next is validating the selected tools by creating small

test programs for both individual and integration tests. After that comes the core

of the project: developing the executor and using it for experiment applications.

On one hand, the development is split into different “core” problems:

1. Design and implement a basic WASM process executor that runs in a Wet-

ware cluster node and can be invoked via Cap’n Proto RPCs.

2. Allow WASM processes run in the executor to use capabilities passed on by

the executor. WASM processes are natively isolated, thus this step involves

finding a way of breaking that isolation, dealing with asynchronous calls in

a synchronous environment, and ensuring it works across environments and

devices.

3. Process management tools:

(a) Keep track of process hierarchies, via local process process trees.

(b) Create and delete a process, developed at step 2.

(c) Link two processes so if one ends, the other does too.

(d) Pause/resume a process.

(e) Monitor processes so the monitor gets notified when the process status

changes.
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(f) List processes on an executor. List processes on a cluster.

4. Integrate the executor with the rest of the Wetware codebase, which is

constantly evolving.

5. Improve the different components as seen fit while developing the rest of

the steps, both for performance and correctness.

On the other hand, experimentation involves creating a basic application, inte-

grating the Raft consensus algorithm with Cap’n Proto and Wazero, and cre-

ating a distributed application based on the basic application using this Raft

library.

1. Create a basic application that runs multiple processes, possibly in multiple

executors, and takes advantage of the functionality offered by Wetware.

The application could have distributed workers but would have a central

coordinator process. Communication among processes would be performed

through capabilities, either the ones provided by Wetware or some created

for this specific application. The selected application is a web crawler with

main and worker processes, in which the workers are distributed but the

coordinator is not.

2. Create a Raft library that uses Cap’n Proto as a transport and can run in

WASM.

3. Create a distributed application based on the basic one, removing the cen-

tral coordinator and making use of the Raft implementation.

4. While the previous steps are being done, profile their execution and bench-

mark different cases.

5. Write and run a benchmarking application.

Finally, once the development has reached enough momentum, start writing the

final document and keep on it for the remainder of the project.
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Figure 3.1: Work plan
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Chapter 4

Methodology and Resources

4.1 Development

Contributions to Wetware were made following an agile methodology, based on

short-term goals building towards a longer-term objective. There was constant

communication with the rest of the team, as well as weekly meetings to discuss

news, progress, roadblocks and comment on any Wetware-related ideas. The in-

cremental, short-term goal-oriented process allowed us to adapt to the quickly

changing environment and the even more quickly changing code-base. The sub-

mitted code was often reviewed by other peers, and the code of other peers was

reviewed by me.

4.1.1 Collaboration and Communication

Louis Thibault, the creator of Wetware maintained close contact with other open-

source communities such as Cap’n Proto or Wazero was one of the main pushing

forces behind the project. He provided invaluable insight into how Wetware

worked as a whole, and its internal components, and helped me navigate and

learn about lower-level workings of both Cap’n Proto and Wazero through regular

discussions on the topic and collaborative experimentation.

The Wazero [59] and Cap’n Proto [60] open communication channels offered a lot
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of information and quick responses to our questions.

4.1.2 Communication

Regular meetings were held weekly with the thesis director, as well as the Wetware

team. Meetings with the director took place either in person or through Google

Meet, while Wetware meetings were always carried out remotely with Google Meet

and Zoom. Besides the weekly meetings, there was constant communication with

the Wetware team through Matrix to comment on development-related topics.

Communication with the Go Cap’n Proto community was carried out through

their matrix channel [60], and communication with Wazero happened on their

Slack channel [59].

4.1.3 Version Control

Most of the work on the Wetware project took place in the main repository [61]

as well as a personal fork [62]. Experimentation was often carried out on now

abandoned branches, where a feature was iterated on until a working version

was found. That version was then refined in a new branch, which was later

merged into the principal branch. There are two main reasons for experimenting

in isolated branches. The first one is that the Wetware codebase changed very

rapidly and would constantly cause issues with the experimentation code, which

changed even more rapidly. The second is that code merged into the principal

branch must be reviewed and might impact potential Wetware users, which is

not appropriate for the volatile nature of the experimentation. Once features

were ready for review, a pull request was created, reviewed, iterated on, and

submitted. The web crawler [63] and raft implementation [64] [65] have their

own repositories.

4.1.4 Roadblock Resolution

The high degree of experimentation and usage of cutting-edge versions of lan-

guages and libraries meant that even if the plan to achieve an objective seemed

feasible, there were bound to be unexpected hindrances. For this reason, possible
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alternative approaches were often discussed to circumvent possible roadblocks.

An issue with asynchronous communication, discussed in chapter 5, is a perfect

example of an approach that seemed feasible, ended up not being possible, and

required diverging into alternative solutions. In this example, we were conscious

that achieving asynchronous communication could present problems dependent

on the WebAssembly runtime and studied migrating to another runtime if the

problems became project blockers.

4.1.5 Iterative Design

New things were constantly being learned as development progressed, making

some previously implemented features worth revisiting to apply newly learned

lessons, optimize performance, and improve code maintainability. The agile ap-

proach set short-term goals that left a lot of leeway to change what objectives

would be prioritized next, and how they would be approached. Lastly, charac-

terizing performance gave some insight that proved useful on some occasions to

optimize parts of the code, which was then improved and re-characterized itera-

tively.

4.2 Characterization

Both computational performance and correct concurrency control have been char-

acterized. Characterizing performance through profiling and benchmarking led

to a better understanding of our resources, potential improvements, and limita-

tions. Concurrency characterization showed whether synchronization primitives

were being adequately utilized.

4.2.1 Profiling

Profiling was carried out with two main tools: pprof and Intel VTune. Intel

VTune is a performance analysis tool for x86 architectures with advanced profiling

features, more so on Intel processors like one used for the development of this

thesis. While VTune provides valuable insight, our analysis relies more in pprof, as

it can be configured from within the Go program to pinpoint specific parts of the
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code. Pprof was originally developed to profile C++ programs, however, Go has

built-in support for it. Conveniently, there is a tool for profiling WebAssembly

modules built and run on Wazero [66], allowing the profiling of both Wetware

host and guest code with the same tool. The WebAssembly profiler acts as an

additional layer on top of the Wazero runtime and allows profiling CPU and

memory usage. Go’s profiler has more features, enabling the profiling of CPU

usage, memory usage, block and goroutine usage, mutex contention, and low-

level execution tracing. Some of these features allow configuring the sample rate,

useful for balancing performance and accuracy. Listing 4.1 shows how a profile of

a section of the code (doWork()) can be generated and stored in a file. Such file can

then be processed by the pprof command-line tool to provide results in a variety

of formats; from top-like commands to a full-featured web user interface.

1 runtime.SetCPUProfileRate (100000)

2 f, _ := os.Create("cpu -prof.pprof")

3 defer f.Close ()

4 if err := pprof.StartCPUProfile(f); err != nil {

5 panic(err)

6 }

7 doWork ()

8 pprof.StopCPUProfile ()

Listing 4.1: CPU profiling of a Go code segment

4.2.2 Benchmarking

Benchmarking usually involves comparing something against a standard. For

the development of Wetware, the baseline was the result obtained by measur-

ing the performance of a feature on its previous iteration. Comparing current

performance with past performance kept code from regressing, as well as provid-

ing useful insight into what worked and what didn’t. Benchmarks could either

be performed manually, as explored later in chapter 5, or automated with Go’s

built-in benchmark tools.
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4.3 Testing

Unit and integration testing are vital parts of the development process. Unit

tests verified that standalone components worked, while integration tests verified

components interacted correctly with one another to provide the expected overall

functionality.

Unit tests are straightforward and usually follow the same formula: an initial

setup where components are initialized, a section that performs the action being

tested, and a final section verifying the action had the desired effect. Listing 4.2

contains an example of a unit test used for the process tree developed earlier in

this chapter. For reference, unit tests are located in the same directory as the

code they are testing, in the main Wetware repository.

1 func TestProcTree_Insert(t *testing.T) {

2 // child , parent , branchof , 0=left 1= right

3 matches := [4][4] uint32{

4 {12, 5, 5, 0},

5 ...

6 }

7 pt := testProcTree () // generates a pre -populated process

tree

8 for _, match := range matches {

9 pid , ppid , expectedId , side := match[0], match[1], match

[2], match [3]

10 pt.Insert(pid , ppid)

11 ...

12 }

13 ept := ProcTree{/* expected shape */}

14 if *pt != ept {

15 t.Failf("final tree did not match expected tree: %v - %v"

, *pt, ept)

16 }

17 }

Listing 4.2: Simplified unit tests for ProcTree.Insert

Go provides the means to benchmark applications as a complement to unit test-

ing. While only informative in this thesis, benchmarking results could potentially
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be used to reject changes that entail some level of performance loss. The sample

in listing 5.9 is the source code of the benchmark used to measure the performance

of inserting sibling processes on a process tree.

1 func BenchmarkTree_InsertSibling(b *testing.B) {

2 t := csp.ProcTree {...}

3 var offset , total uint32 = 1, 10000

4 b.ResetTimer ()

5 for i := offset; i < total+offset; i++ {

6 t.Insert(i, 0)

7 }

8 }

Listing 4.3: Simplified benchmark for ProcTree.Insert

Another fundamental consideration when verifying the correctness of the code

is verifying that certain packages can be compiled to, and therefore used from,

WebAssembly. Most of the repositories developed during the thesis contain a

Makefile with a make test wasm command. This command builds a list of prede-

termined packages with the WASM compilation target, allowing us to see if any

proposed changes would break WASM compatibility.

Lastly, knowing that a component works in an isolated test does not guarantee it

will work when it is used in aWetware cluster. Integration tests in this case consist

of instantiating Wetware nodes and testing whether the components behaved as

expected when invoked through RPCs in a real environment; e.g. starting a

Wetware node and running a simple Wetware process through its executor, used

to verify whether capability bootstrapping works in a real environment. There

have been many times were unit tests of the executor or other components passed,

but using those components through a client that connects to a Wetware cluster

failed. Initially, these integration tests intended to be performed by an automated

CI tool whenever a commit was uploaded to any branch of the git repository,

however this methodology was discarded during the development of the thesis

for complexity and task priority reasons, as the rapidly changing library required

continuous adjustments and generated conflicts between developers of different

components. After the disabling of the CI tool, integration tests were performed

manually each day to ensure no new errors had been introduced.
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4.4 Experimentation

Analyzing the validity of the executor and its process management capabilities, as

well as its performance impact required two distinct methods of experimentation.

The first one focused on validating the solution and verifying it worked not only

on a single machine but as a distributed system with multiple hardware nodes.

The second one is creating work-bound and IO-bound applications and observing

how the executor and the applications behave.

4.4.1 Validation

Validation is done through continuous unit and integration testing, as well as

an implementation of a functional crawler that runs parallel Wetware processes

on one or multiple nodes and accesses external resources through object capa-

bilities. While initially simple, the web crawler application evolved to contain a

distributed log for pages to have consensus on visited pages.

4.4.2 Performance

Evaluation of performance was done with some experiments involving both work-

bound and IO-bound workloads. The work-bound program consisted of looped

arithmetic operations spread over multiple processes and repeated an arbitrary

number of times. IO-bound behavior was analyzed by giving the web crawler

access to varying amounts of resources. The graphs shown in chapter 6 were

created using Matpltolib [67] and SciencePlots [68].

4.5 Testbed

This thesis had tests performed utilizing three devices, whose specifications are

available in table 4.1. The validation experiment with a multi-node web crawler

used all three devices. All other tests and measurements took place on the desktop

PC. All three devices are connected to the same local network through Ethernet of

a maximum of 1Gbps for the desktop and laptop, and 100Mbps for the Raspberry

Pi.
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Device Component Specification

Desktop PC

CPU Intel Core i7-6700K, 4.00GHz, 4C8T

Memory 4x8GB dual channel DDR4, 2133MHz

L1 Data 4x32kB, 8-way associative, 64B lines

L2 4 x 256kB, 4-way associative, 64B lines

L3 8 MB, 16-way associative, 64B lines

OS Linux 6.5.5-arch1-1

Laptop

CPU Intel Core i7-7500U, 2.70GHz, 2C4T

Memory 1x16GB DDR4, 2133MHz

L1 Data 2x32kB, 8-way associative, 64B lines

L2 2x256kB, 4-way associative, 64B lines

L3 4MB, 16-way associative, 64B lines

OS Linux 6.5.5-arch1-1

Raspberry Pi

Model 3B

CPU 4× ARM Cortex-A53, 1.2GHz

Memory 1x1GB LPDDR2, 900 MHz

L1 Data 4x16KB

L2 512KB

OS Linux 5.10.103-v7+

Table 4.1: Testbed specifications
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Chapter 5

Development

5.1 Development Considerations

This section will go over the most important factors that were considered when

developing the components described in this chapter.

5.1.1 Terminology

The execution of WASM code in the chosen WASM runtime will be referred to

with different terms: guest process, WASM process, and WASM module instance.

In contrast to this, the concept of a process running in a Wetware executor will

be referred to as Wetware process or simply process. The latter encapsulates an

object capability that wraps a guest process. On a similar note, channels might

refer to either the native communication tool of the Go programming language,

or the general-purpose communication tool provided by Wetware as an object

capability, as illustrated by figure 5.1. The context in which it is used will make

it clear which one of them a segment is referencing.

5.1.2 Thread Safety

Thread safety is a fundamental requirement for the executor and practically every

software component developed for this thesis. Executors, processes, and other
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Figure 5.1: Wetware processes vs. WASM process

components will be attending multiple calls concurrently, often parallelly. Correct

usage of concurrency control and communication mechanism is paramount, for

both optimal performance and avoiding issues such as deadlocks. The tools and

mechanisms used to ensure thread safety are mainly: channels, system calls, and

mutexes. They all have a variety of types and uses, which will be explained in

more detail throughout chapter 5.

5.1.3 Scheduling

Due to Wetware’s overall design, the technologies used for the development of

the process executor, and the high amount of communication distributed sys-

tems usually require, concurrency is a must for this project. Understanding Go’s

approach to concurrency can lead to better performant application design. For

that reason, this section will go into some level of detail on how concurrency is

handled in Go and how it is utilized in this project.

Work in Go programs is performed by goroutines: lightweight threads managed

by the Go runtime [2]. How these lightweight threads are matched to OS threads

is usually explained through the Gs, Ms, and P s. G refers to a goroutine, of type

g. M refers to an OS thread, of type m. An M can be running Go code, runtime

code, a system call, or idle. P refers to a logical processor of type p, such as a

CPU core. For two Gs to run in parallel, they need to be executed on different

P s. The Go scheduler’s primary function is to match a G, an M , and a P . Every

44



5.1. Development Considerations 5. Development

g, m, and p object is allocated on the heap and is never freed in order to avoid

write barriers on the execution of the scheduler.

Because goroutines are Go runtime objects and any number of Gs can share a M

OS thread, switching context between goroutines is much cheaper than switching

context between OS threads; switching Gs on an M has a significantly lower cost

than switching Ms on a P . Three registers need to be stored and loaded when

performing a goroutine context switch: the program counter, the stack pointer,

and the general-purpose data register DX. Go’s concurrency model is partially

preemptive and will context-switch goroutines after a fixed amount of time to

keep certain code patterns, such as tight loops, although cooperative context

switching is often preferred.

The scheduler attempts to exploit data locality by keeping related Gs on the same

P [69]. Each P has a local run queue (LRQ) of Gs to run, as well as access to

a global run queue (GRQ) shared with the rest of P s. LRQs have a maximum

capacity of 256 Gs. Figure 5.2 shows an example of a scheduler state where a

logical processor P is running a goroutine G1 through an OS thread M , while

having G2 and G3 on its LRQ. The GRQ contains G4 and G5. When a new G′

is added to a P with a full LRQ, Gs are moved out of the queue in a batch for

this same reason. If a P attached to a M runs out of tasks in the local queue, it

will take runnable Gs either from the global queue, the LRQ of other processes,

or the network poller, in order to keep the OS thread M to be preempted from

P .

Figure 5.2: Scheduler state example representation

IO-induced context switches also introduce significantly less overhead than pre-

emptive context switches. In the context of this thesis, we will differentiate
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between two types of IO-bound concurrency: local IO and global IO. Local IO

occurs when a goroutine performs IO calls towards other goroutines through Go

channels, all of which happens inside the Go runtime. Global IO occurs when

IO operations take place outside the Go runtime, e.g. writing to a TCP socket.

Starting with the former, when a goroutine needs to write to or read from a non-

buffered channel, the goroutine will park itself and allow the execution of another

goroutine on its M . The software developed in this project takes heavy advan-

tage of that by performing a lot of local IO-bound work where goroutines perform

some work and either read from or write to a channel. When a goroutine needs

to perform globally IO-bound work, it will make an asynchronous system call.

Modern operating systems natively support asynchronous system calls through

tools such as epoll [70] on Linux. When a G performs an asynchronous system

call it will be placed in the queue of a new entity distinct from P : the network

poller. Once the asynchronous syscall ends, the network poller will place G back

in the LRQ of the P that had it. Figure 5.3 shows the state of figure 5.2 in which

G1 is performing an asynchronous system call and has thus been moved to the

network poller. Once it is finished, G1 will be put back in P ’s LRQ. The network

poller is a key pillar for distributed applications such as Wetware, where RPCs

are performed all throughout the code base and therefore need to handle network

operations efficiently without blocking execution.

Figure 5.3: Scheduler state example representation with a network poller

Go provides multiple native execution-yielding mechanisms as detailed in table
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Table 5.1: Block-levels of native yielding interfaces [2]

Blocks

Interface G M P

mutex Y Y Y

note Y Y Y/N*

park Y N N

5.1. Goroutines can park themselves, yielding execution to other Gs on the same

M and P . Goroutines can be parked for a multitude of reasons, the most common

ones being:

• Use of the go keyword. The keyword implies the creation of a new gorou-

tine, after which the Go runtime is given the opportunity to change what

goroutine is executed.

• System calls. The M will preempt execution from G to run the system call.

• Synchronization. Use of channels, atomic objects, and other concurrency

tools.

• Garbage collection. Garbage collection runs on a set of goroutines, which

also need an M .

Notes, in the context of table 5.1, refer to OS features such as epoll, signals,

or OS concurrency tools. Whether or not these features block logical processors

depends on the specific feature.

Lastly, mutexes block the M running the G that uses it directly without going

through the Go scheduler. Despite being the most penalizing mechanism, they

are sometimes required and are best used to perform quick operations, minimizing

the time between the lock and unlock operations.

Go provides native tools to minimize performance losses when using such tools.

An example amply utilized in multiple occasions throughout the development of

this thesis is sync.Map, which provides built-in thread safety and becomes more
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performant than manually implemented maps with read/write mutexes as appli-

cation parallelism grows [71].

As a closing thought, Go manages to make IO-bound workloads seem like CPU-

bound workloads to the OS it’s running on by managing goroutines with the Go

runtime, running on user space as much as possible, and keeping OS implication

to a minimum. The concepts mentioned throughout this section will be present

all throughout this chapter, and will give the reader a better understanding of

what is happening under the hood when using channels, attending or performing

RPCs, or dealing with thread safety.

5.2 Base Executor Design

The highest-level concept for the executor is defined as: A software component

capable of running and managingWASM processes, exposed through an object ca-

pability. This basic definition implies the integration of Cap’n Proto and Wazero,

the two core tools we’ve researched earlier. Figure 5.4 shows the main compo-

nents of the executor in its final form, although some elements can be ignored for

now as they will be developed later in this chapter. The components relevant to

this section are: the executor, the processes, the Wazero runtime, and the WASM

module instances. Components marked with an asterisk (*) are exposed through

capabilities.

Let’s now go over the basics of how a Wazero runtime can be configured, shown

in listing 5.1. The configuration is built utilizing the Functional Options Pattern,

which consists of adding methods to a type T that take a t, apply some config-

uration, and return the changed t, e.g. func (t *T) withChange(...) *T. When

the Wazero runtime executes WASM module instances, it binds the execution

to an arbitrary context. The option WithCloseOnContextDone(true) specifies that

when the context bound to a running guest process finishes, so does the guest

process. This is a requirement for the correct shutdown of executors, as well as

for developing the Kill command as will be explored later on. After the runtime

is created, it is configured to use Wazero’s partial WASI implementation by the

function shown in line 5 of listing 5.1.
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Figure 5.4: Main components of the executor

1 cfg := wazero.

2 NewRuntimeConfigCompiler ().

3 WithCloseOnContextDone(true)

4 runtime := wazero.NewRuntimeWithConfig(ctx , cfg)

5 wasi_snapshot_preview1.Instantiate(ctx , runtime)

Listing 5.1: Wazero runtime creation and configuration

Next let’s understand how the runtime can be used to configure and compile

a WASM module, followed by instantiating the module and starting a guest

process by calling the main function. The first step is to decode and validate

the intermediate bytecode, done in the first line of listing 5.2. Instantiating the

module requires some configuration, which in this case includes:

• Don’t run any start functions when instantiating the module. If unset,

guest execution would start as soon as instantiation is done, instead of

when explicitly requested.

• Set the clock precision and initialize the clocks.

• Set a source for random generation.

• Set the module name, used to tell modules with equal bytecode apart.
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• Set environment variables. The variable ns is required for the capability

bootstrapping explained later in this chapter.

• Bind the stdin, stdout and stderr of the instance.

The only steps left are to export the main function, identified by the start name,

and call it with a context, as mentioned when listing 5.1 was explained. fn.Call(

ctx) will block the execution of the current goroutine and run the guest process in

a separate goroutine. The whole life cycle of the WASM guest will be bound inside

that goroutine and thus WASM guests process have no real parallelism.

1 compiled , _ := runtime.CompileModule(ctx , bytecode)

2 modCfg := wazero.NewModuleConfig ().

3 WithStartFunctions (). // ommit start func.

4 WithSysNanosleep (). // sleep precision.

5 WithSysNanotime (). // clock precision.

6 WithSysWalltime ().

7 WithRandSource(rand.Reader). // rng.

8 WithName(name). // module name.

9 WithEnv("ns", name). // env variables.

10 WithArgs(args ...). // args

11 WithStdin(os.Stdin).

12 WithStdout(os.Stdout).

13 WithStderr(os.Stderr)

14 mod , _ := runtime.InstantiateModule(ctx , compiled , modCfg)

15 fn := mod.ExportedFunction("_start")

16 if fn == nil {

17 return fmt.Errorf("ww: missing export: _start", mainFunc)

18 }

19 fn.Call(ctx)

Listing 5.2: Create a WASM module and call a function

As a side note, the initial versions of the executor capability allowed passing

Wetware channel capabilities as arguments, to use as the process’ stdin, stdout

and stderr by binding them to byte streams created by the executor and passed

to the Wazero module instantiation through modCfg.WithStd(in|out|err) config-

uration options. We discovered a bug in go-capnp where the arguments of two

methods of a capability could be switched if they had the same signature, which
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has been since solved. While functional, the concept was discarded due to the ad-

ditional overhead and points of failure it introduces. It is still possible to achieve

the same functionality by manually passing channels to a process and replacing

the guest program’s std outputs.

These steps allow the execution of WASM code, but that still needs to be ex-

posed through an object capability. The Executor capability serves that purpose,

through the exec method.

1 interface Executor {

2 exec @0 (bytecode :Data) -> (exitCode :UInt32);

3 }

Listing 5.3: Executor capability definition

The sequence diagram displayed in figure 5.5 sums everything up and shows the

basic steps of running a WASM process through a Wetware RPC.

Figure 5.5: Steps of running a WASM function through a Capnp RPC

For the sake of simplicity, this section has omitted some segments of the code

that are not relevant as they don’t contribute to the understanding of the process

and deal with specific problems, e.g. ensuring resources are closed after they are

used or dealing with errors. An exception to this are command line arguments.
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Wetware processes can receive command line arguments, by including an args

parameter of type List(Text) in the exec method signature. This text list is then

parsed and passed to the process with the WithArgs(s ...string) option in the

module configuration.

5.2.1 Exposing Process Control

In order to maintain consistency with the Object Capability oriented design of

Wetware, managing a process should be done with a capability presenting said

process. Users are given access to processes through a capability created by the

executor to encapsulate the aforementioned fn.Call(ctx). This way exec will no

longer block until the WASM process is done, the Process.Wait function will serve

this purpose, see listing 5.4. Other process functionalities, such as Kill or Link

will be exposed through this very same capability later on.

1 interface Executor {

2 exec @0 (bytecode :Data) -> (process :Process);

3 }

4

5 interface Process {

6 wait @0 () -> (exitCode :UInt32);

7 }

Listing 5.4: Process capability definition

The sequence diagram representing inter-component interactions that happen

during the creation and execution of a process, from executing WASM bytecode

to waiting for it to finish is expanded in figure 5.6.
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Figure 5.6: Addition of a Process capability to figure 5.5

The full definition of the process implementation is included in appendix A, how-

ever listing 5.5 shows the partial definition of a process for illustration purposes.

Two of the attributes are of special relevance: cancel and killFunc. When called,

cancel will stop the context that is being used to both run the WASM program,

and serve the capabilities of process. Calling cancel will therefore stop the at-

tached guest code as well as release its object capability. On the other hand,

killFunc is a private function that is always called by the public Kill method.

The killFunc function is passed onto a process by its executor upon creation.

Section 5.4.2 provides more insight into the stopping of a process.

1 type killFunc func(uint32)

2 type process struct {

3 args [] string

4 time int64

5 done <-chan execResult

6 killFunc // killFunc must call cancel ()

7 cancel context.CancelFunc

8 result execResult

9 }
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Listing 5.5: Process capability definition

Listing 5.6 contains a segment of the executor’s Exec method, where it creates a

process, inserts it into the tree and its map, followed by spawning a new goroutine

that is responsible for starting the WASM process. That goroutine will block in

the line that contains fn.Call until the WASM process finishes.

1 ...

2 done := make(chan execResult , 1)

3 proc := &process{

4 Args: args ,

5 time: time.Now().UnixMilli (),

6 killFunc: r.Tree.Kill ,

7 done: done ,

8 cancel: cancel ,

9 }

10

11 r.Tree.Insert(c.args.Pid , c.args.Ppid)

12 r.Tree.AddToMap(c.args.Pid , proc)

13

14 go func() {

15 defer close(done) // end the context

16 defer c.cancel () // stop the rpc provider

17 defer proc.kill() // terminate the process

18 vs, err := fn.Call(c.ctx) // start the WASM process

19 done <- execResult{

20 Values: vs ,

21 Err: err ,

22 }

23 }()

24 ...

Listing 5.6: Segment of Executor.Exec implementation

5.3 Host-Guest Communication

Expanding the executor definition stated at the beginning of section 5.2: the

executor is a software component capable of running and managing Wetware
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WASM processes, exposed through an object capability. Wetware WASM pro-

cesses refer to WASM processes capable of using Wetware tools, which needs to be

done through object capabilities by design. The executor designed in the previous

section can run WASM programs, but those programs are isolated and lack the

means to access external resources, such as object capability connections. This

section deals with possible approaches and expands on the one that was followed

through for our implementation.

The most important characteristic of the communication between the guest and

the host is asynchrony. If a WASM process blocks when writing to or reading

from the communication medium, execution of the other goroutines in the WASM

process will stop. Programs intended for distributed systems, which are the

main focus of Wetware, will most likely import a lot of networking. Without

asynchrony, processes would become intolerably slow and, perhaps even more

importantly, easily deadlock. For these reasons, the transport used by the guest

to access capabilities must support asynchronous communication.

Arguably, the most intuitive approach to this problem is to implement host func-

tions, as they are intended to do what the guest can’t. While perhaps possible

through some form of communication multiplexing or in-guest implementation of

epoll, the efficacy of this method is not guaranteed to the best of our knowledge.

The following quote, extracted from the official Go documentation on WASM,

states how host calls will block goroutines.

WASM is a single threaded architecture with no parallelism. The

scheduler can still schedule goroutines to run concurrently, and stan-

dard in/out/error is non-blocking, so a goroutine can execute while

another reads or writes, but any host function calls [...] will cause all

goroutines to block until the host function call has returned [72].

We tested host functions by implementing read/write functions which were used

as a transport for bootstrapping capabilities. We implemented read and write

calls to Go’s native ReadWriteCloser type, commonly implemented by transports,

buffers, files, and other sensible types. These functions were exported to the

WASM runtime so that guest processes could use them. We then implemented
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Figure 5.7: Asynchronous host-guest communication through host functions and

a pipe

a transport for the WASM guest that would read and write using these system

calls. When creating a Wetware process, one of the ends of the pipe was used to

provide a capability by a goroutine running on the host. The other end of the pipe

was bound to the WASM guest and read from/written to by the guest process,

by allowing capabilities to interact with this custom transport. This design is

illustrated in figure 5.7. The host function approach worked for Go processes,

but consistently deadlocked Wetware processes and was deemed unfeasible.

Conveniently, one of the latest WASI proposals advocates for support of asyn-

chrony in system sockets [73], which depended on the WASM guest implementing

netpoll. Wazero implemented this functionality while this thesis was ongoing,

and we even took a very small part in the conversation around its implementa-

tion through Wazero’s Slack channels. At the same time, and also during the

development of this thesis, Google introduced a new wasip1 compilation target

separate from the previously existing JS in Go 1.21 (see section 5.3.1). This com-

pilation target introduced the netpoll instruction for WASM guests [74], making

it possible to combine the latest Go and Wazero versions to use TCP sockets as

the transport for capability bootstrapping. Relying on cutting-edge versions of

these two technologies was vital for the project, but did bring some development

headaches which will be later discussed in section 5.3.1.

The transport used for bootstrapping is then multiplexed by Cap’n Proto to serve

as a transport for multiple capability connections at once, meaning implementing

this correctly will break WASM guest isolation in a controlled manner, and pro-
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Figure 5.8: Asynchronous host-guest communication through a pre-opened TCP

socket

vide a clear way for Wetware processes to interact with the outside world through

capabilities.

Figure 5.9 contains the flowchart for attending process execution requests. As

shown in the diagram, the host must pre-open a TCP port before passing. The

Wazero runtime will then bind this port to the file descriptor 3 of the guest. This

file descriptor belongs to the pre-opened TCP port, as it is the first one after

stdin (0), stdout (1), and stderr (2). The guest will use the socket like it would

any other file. Any number N of ports can be pre-opened for the WASM guest,

which can then be accessed by the guest starting with file descriptor 3 up to FD

2+N. Only the first file descriptor is used, nonetheless. The flow of diagram 5.9

splits into three separate goroutines:

1. Receive the RPC, attend the process, and return its capability as the RPC

result.

2. Provide the server-end of the Wetware session capability the WASM process

will receive.

3. Start the WASM process by calling a WASM module function.

Goroutines 2 and 3 share a context, independent from the context of the RPC

call, so if the context is ended or either of them fails, the other can be easily

stopped.

The guest steps, shown in figure 5.10, involve creating a connection listener from

a file with FD 3, accepting a connection through the listener, and using the
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connection as the capability transport. These steps are abstracted from the final

user, which will be further explained in section 5.5.1.1.

Figure 5.9: Exec RPC server flowchart
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Figure 5.10: Wetware WASM program initialization flowchart

This method of communication introduces overhead in both module instantiation

and execution in the form of TCP dials and unnecessary data copying. While

not computationally expensive, it entails switching context in a goroutine level

several times which is not ideal. The fast advancements in the Go WASM com-

pilation target, Wazero, and WASI make the earlier approaches worth revisiting

once WASI matures some more; to avoid the aforementioned limitations in or-

der to find a way to allocate a no-copy transport for RPC calls. This allocation

is ideally invoked on-demand by the guest via file-system or host functions so

that capabilities held by the guest code can each have their own transport and

achieve higher throughput. Regarding security, communicating over sockets ex-

poses Wetware to a different set of vulnerabilities than using host functions [75],

which applications developers might need to consider.
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5.3.1 Migration to Go 1.21

Section 5.3 required upgrading Go from version 1.20 to 1.21, which had no official

release at the time. Due to the open-source nature of Go, the 1.21 version could

be manually built by building the latest commit, often referred to as gotip, of the

language’s git repository [76].

Go 1.21, however, was not compatible with some of Wetware’s dependencies.

Tracking down the issue showed that one of libp2p’s dependencies, quic-go, dropped

support for QUIC draft-29 and adopted Go’s native crypto/tls library for TLS in-

stead of implementing its own as it did with the previous Go versions. This caused

errors where libp2p components required code components from quic-go that were

no longer present, preventing Wetware from compiling with Go 1.21.

Solving this issue required forking many of the dependencies shown below and

temporarily replacing them as Wetware’s dependencies until the issue was re-

solved in the second half of August 2023 with the official release of Go 1.21

and go-libp2p v0.30.0. Walking down the dependency tree resulted in 13 sepa-

rate repositories needing to be forked and modified, as listed in table 5.2. All

repositories were hosted on GitHub and the forks can be accessed at https://

github.com/mikelsr/<Name>.

Once the dependencies were identified, forked, and modified, Wetware was mod-

ified to depend on the forks instead of the originals: from that point until the

official Go 1.21 released in the latter half of August 2023 and the dependencies

made the required changes to be compatible. During that period Wetware also

needed to be compiled with gotip.

As an additional note, the SetNonblock system call was not correctly implemented

for some time. After many trials, debugging, and asking the Wazero development

team, we narrowed down the issue and moved on to other parts of the thesis while

it was fixed in a pull request [77] which was active for the same issue on an HTTP

server built in a WASM guest.

The issue that pushed us to Go 1.21 and the newly introduced features were

60



5.4. Process Management 5. Development

Owner Name Changelog

ipfs go-peertaskqueue Modify dependencies.

ipfs boxo Modify dependencies.

libp2p go-libp2p Modify dependencies. Disable

CI. Modify mocks.

libp2p go-libp2p-kad-dht Modify dependencies.

libp2p go-libp2p-kbucket Modify dependencies.

libp2p go-libp2p-pubsub Modify dependencies.

libp2p go-libp2p-record Modify dependencies.

libp2p go-libp2p-routing-helpers Modify dependencies.

libp2p go-libp2p-testing Modify dependencies.

libp2p go-libp2p-xor Modify dependencies.

lthibault go-libp2p-inproc-transport Modify dependencies.

quic-go quic-go Modify dependencies. Generate

1.21 library. Drop 1.19 library.

Merge pending PR from origin

to adopt native crypto/tls.

quic-go webtransport-go Modify dependencies.

Table 5.2: Wetware dependency repositories modified for Go 1.21 compatibility

not adopted as quickly in the compiler we were using up to that point to com-

pile.

Lastly, it should be mentioned that there was an active conversation about migrat-

ing to other WebAssembly runtimes that supported asynchronous communication

as opposed to the standard, but this contingency plan ended up not needing to

be carried out.

5.4 Process Management

Process management is a fundamental part of the executor. This section will go

over the different process management features designed and implemented during

the development of the thesis, diving into each of them at a low level.
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5.4.1 Process Hierarchy

Process trees are conceptually multi-branch trees where each process is a node

identified by its PID. To keep algorithmic complexity low, it was decided to

represent the multi-branch tree as a binary tree where the left child of a node

represents a child process and the right child represents a sibling brother: a

process that shares the same parent. As an example, the process tree shown in

figure 5.11a can be represented as the binary tree of figure 5.11b. PIDs have the

uint32 bytes, as executors do not support 232 concurrent active processes. Each

process tree has an atomic counter increased every time a process is created,

which is used to generate PIDs.

(a) Natural tree (b) Binary representation

Figure 5.11: Representations of the process tree

The executor may receive simultaneous calls that may be handled in parallel. For

this reason, thread safety is a must. A read/write mutex is employed to achieve

this, allowing any number of reads to happen simultaneously but ensuring no

read is being performed while the tree is being altered. The two write operations

that can be performed on the tree are adding a node and deleting a node. More
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Table 5.3: Read/write requirements of process tree operations

Operation

Access find findParent insert pop delete trim kill

read yes yes yes yes yes yes yes

write no no yes yes yes yes yes

complex write operations which are composed of any combination of additions

and deletions, may need to acquire the write lock to ensure the integrity of the

tree. For this reason, the tree has been designed in such a way the private methods

don’t acquire or release locks. Instead, public methods wrap private methods and

are responsible for acquiring and releasing locks. As an example, the private find

method does not acquire a lock, but the public method Find does. This ensures

every user of the module uses the thread-safe methods, but allows for careful and

deliberate omission inside the package so that functions such as Delete, which

has an implicit call to find inside, can avoid deadlocks. Table 5.3 shows the

read/write requirements of each function implemented for the process tree.

Listing 5.7 contains the definition of the process tree. PIDC is a counter that

increases each time a process is created, giving them unique PIDs. TPC is used

to keep track of the total number of processes. Root is the start of the tree. Map

maps PIDs to the process objects, so that tree nodes are kept lightweight and

actual capabilities are accessible in O(1) time.

1 type ProcTree struct {

2 PIDC AtomicCounter // generates PIDs

3 TPC AtomicCounter // total process count

4 Root *ProcNode // root node

5 Map *sync.Map // process map

6 Mut *sync.RWMutex // read -write mutex

7 }

Listing 5.7: Process tree struct definition
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5.4.1.1 Traversal

While there is no optimal search algorithm for these binary process trees, some

will perform better in certain conditions. Pre-order DFS may perform better

when looking for older processes as they are more likely to be in the upper

branches. In-order and post-order DFS may perform better when looking for

newer processes.

The Wetware process tree currently performs in-order DFS operations, but other

implementations may be added in the future in order the select the best-fitted one

as the tree evolves. To improve search efficiency, executors contain a thread-safe

map of PID → Process to retrieve processes in O(1) constant time instead of

the linear time it’d take to transverse the tree. Operations on the tree still require

manual search to ensure the process is still in the tree, but other calls such as

getting process information are significantly sped up this way.

Find(pid uint32) implements a rudimentary DFS algorithm that traverses the tree

until it finds a node with the specified PID. FindParent(pid uint32) is used to find

the parent of a process. It does so by first finding the process and then following

a linear path upwards until the path either ends or turns right, signifying it has

arrived at the parent process.

5.4.1.2 Addition

Adding a new node to the tree is done through an Insert method. Insert, defined

in listing 5.8, works as follows:

1. Find the parent node of the new process by traversing the tree looking for

a node with a PID that matches the new process’ PPID.

2. Check if the parent node has a left branch, which represents a child process.

(a) Condition 2 is true: starting with the left branch of the parent, iterate

over the sibling processes and insert the new process as the right branch

of the last sibling.

(b) Condition 2 is false: insert the new process as the left branch of the

parent.
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1 func (pt ProcTree) insert(p process) error {

2 parent := find(p.ppid)

3 if parent == nil {

4 return errors.New("parent not found")

5 }

6 if parent.Left == nil {

7 parent.Left = n

8 return nil

9 }

10 next := parent.Left

11 for next.Right != nil {

12 next = next.Right

13 }

14 next.Right = &ProcNode{

15 Pid: p.pid ,

16 }

17 }

Listing 5.8: ProcTree.Insert simplification

5.4.1.3 Deletion

There are three deletion-related operations implemented for the process tree.

Firstly, Pop(pid uint32) removes a process and its children from the process tree,

and fills the gap the process may have left with its next sibling (its right branch).

Next, there is a Kill(pid uint32)method that calls the kill function of a process, as

well as calling the Kill method of each process, explained in figure 5.12 of section

5.4.2. Lastly, there is a Trim function. Trim finalizes the processes that are not

part of the tree. The current implementation should not allow this scenario to

happen, but this method exists as a contingency.

5.4.1.4 Process Tree Benchmarking

Benchmarking the publicly exposed methods produces the results of listing 5.9.

Each of the tests performs 10000 addition or deletion operations, and tests are

repeated 100000 times in order to average the results. The first column contains

the name of the test, the second column specifies how many times the addition
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or deletion operation was performed, and the third column shows the average

time it took to perform each operation. The major performance bottleneck is

the tree transversal. InsertSibling traverses the right branch until reaching the

end, as opposed to InsertChild and DeleteDesc which also need to explore left

branches. DeleteAsc, on the other hand, finds the node it is expecting at the

very root of the tree every single time and is therefore much faster than the

other methods. Repeating the tests using the thread-unsafe methods provided

extremely similar results, making the performance impact of concurrency control

methods negligible in strictly sequential use of the tree.

1 $ go test -bench =.

2 goos: linux

3 goarch: amd64

4 pkg: github.com/wetware/pkg/cap/csp/server

5 cpu: Intel(R) Core(TM) i7 -6700K CPU @ 4.00 GHz

6 BenchmarkTree_InsertSibling -8 1000000000 0.1050 ns/op

7 BenchmarkTree_InsertChild -8 1000000000 0.2080 ns/op

8 BenchmarkTree_DeleteDesc -8 1000000000 0.2541 ns/op

9 BenchmarkTree_DeleteAsc -8 1000000000 0.0003308 ns/op

Listing 5.9: Process tree insert and delete benchmarks

5.4.2 Process Ending

As mentioned in section 5.2, when building a Wazero runtime for the Wetware

executor the WithCloseOnContextDonemust be set to true. This option allows calling

the cancel function of the context passed to the WASM process instantiation,

which will result in Wazero ending the process (section 5.2.1). Figure 5.12 shows

a detailed layout of what happens when the Kill method of a process is invoked.

It first causes the tree to stop its child processes, followed by removing the branch

from the tree, stopping linked processes and lastly notifying monitors.

5.4.3 Process Execution Pause and Resume

To our understanding the Wazero runtime does not natively provide means of

pausing and resuming the execution of processes. When asked about this topic

through the Wazero Slack Channel the Wazero team replied:
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Figure 5.12: Step-by-step flow of process.Kill

The runtime does not schedule processes, it’s the application’s re-

sponsibility to drive compilation, instantiation, and execution of the

WASM modules; Wazero gives you the building blocks, then the ap-

plication has full responsibility of deciding how scheduling is done.

[59]

While it might possible to edit the Wazero source code to implement this func-

tionality, it is a very demanding task that is not viable due to project scope and

deadlines. Instead we opted to provide the means of sending pause and resume

signals to the running process by means of an EventHandler capability.

1 struct Process {

2 ...

3 pause @2 () -> ();

4 resume @3 () -> ();

5 }

Listing 5.10: Process.Pause and Process.Resume RPC definition

The executor passes a EventHandlerSetup capability to the process on creation and

waits for the process to start, creates an event handler, and provides its capability
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through a call to EventHandlerSetups only method. The executor then links said

capability to the process capability, which is now able to provide pause and resume

methods shown in listing 5.10.

The capability, implemented in listing 5.11, contains an event handler with two

channels: one to signal a pause request and another for resume requests. Channels

will only be written if they are empty to avoid buffering calls and unreliable

behavior. The channels are made available to the process that acts upon the

events via OnPause and OnResume methods that return read-only ends.

1 type EventHandler struct {

2 pause chan struct {}

3 resume chan struct {}

4 }

5

6 func (e EventHandler) Pause(ctx context.Context , call api.

Events_pause) error {

7 if len(e.pause) > 1 {

8 return errors.New("already paused")

9 }

10 select {

11 case <-ctx.Done():

12 return ctx.Err()

13 case e.pause <- struct {}{}:

14 }

15 return nil

16 }

17

18 func (e EventHandler) Resume(ctx context.Context , call api.

Events_resume) error {

19 if len(e.pause) > 1 {

20 return errors.New("not paused")

21 }

22 select {

23 case <-ctx.Done():

24 return ctx.Err()

25 case e.resume <- struct {}{}:

26 }

27 return nil

28 }

29
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30 func (e EventHandler) OnPause () <-chan struct {} {

31 return e.pause

32 }

33

34 func (e EventHandler) OnResume () <-chan struct {} {

35 return e.resume

36 }

Listing 5.11: EventHandler capability implementation

Once the process starts, it may create an event loop to handle these signals.

Listing 5.12 shows a basic implementation of an application that can pause and

resume its execution. It is a simple web crawler that sends an HTTP request

to a URL (not shown), scans it for more URLs (not shown), stores the newly

found URLs in a queue, and repeats the loop by crawling the next URL in that

queue.

Every time a URL is crawled, the code will arrive at the select statement. If dur-

ing the crawl the pause method of the process’ event loop was invoked, execution

will be blocked until the resume method is called. A call to runtime.Gosched was

added as a minor optimization, as this method will immediately yield the pro-

cessor to other processes without needing to check the resume channel first. The

executor can further define yielding behavior by means of the Wazero WithOsyield

module configuration.

1 func main() {

2 ...

3 urls = make(chan string)

4 for {

5 select {

6 case <-eventHandler.OnPause ():

7 runtime.Gosched ()

8 <-eventHandler.OnResume ()

9 case <-crawl(ctx , urls , <-urls):

10 }

11 }

12 }

Listing 5.12: In-process event loop

69



5.4. Process Management 5. Development

The code of listing 5.13 contains a partial implementation of the crawl func-

tion, skipping the HTTP requesting and web-page parsing, that performs a task,

notifies its completion via the returned channel and writes the results in a new go-

routine. The write-end of the queue will block until the read-end is also accessed,

thus it will also be paused when the main loop pauses.

1 func crawl(ctx context.Context , urls chan string , url string) <-

chan struct {} {

2 // page := httpGet(url)...

3 // parse page and create a url list in @results ...

4 var results [] string

5

6 done := make(chan struct {})

7 go func() {

8 done <- struct {}{}

9 for _, r := range results {

10 urls <- r

11 }

12 }()

13 return done

14 }

Listing 5.13: Example of pausable crawl function

5.4.4 Process Linkage

The process linking feature developed in this section is defined in the following

way: linking process A to process B establishes that ending either process A

or B will also end process B or A, respectively. It is a variation of Erlang’s

linking [55], where process B will send an exit signal with the reason behind

the exit upon B’s exit. When approaching the design of this functionality it is

worth considering that linking two processes that belong to the same executor

is potentially more performant than linking processes across executors. For this

reason, it was decided to provide two methods: a general one for processes that

may or may not share an executor, and a local one for processes that wish to

optimize linkage performance. For the rest of this sub-section, ‘process‘ will refer

to the Go structure wrapping the WASM process, and not the WASM process

itself.
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Let’s start with the general approach. Each process now has a unique id method

that returns a unique, randomly generated number assigned to it on its creation.

Each process also has a thread-safe map M containing any number of capabilities

referencing other processes, mapped by their id. As explained in section 5.4.2,

every process P has deferred a call to P.killFunc which will be executed once

the underlying WASM process ends or is canceled for any reason. When process

A links to process B, it stores B in MA it passes a reference to itself which B

stores in MB. B, or any other process, will call B.killFunc followed by a call to

the RPC P.Kill for every process in M , which in this case will include A.Kill

(). Termination will propagate along links so that in a scenario A ↔ B ↔ C

where A ↔ B represents A’s linking to B, terminating C will also result in A’s

termination. We’ll refer to this A ⇔ C relation as an indirect link caused by the

propagation of B’s termination, as opposed to direct links created by the RPC.

Calls to unlink indirectly linked processes will have no effect.

1 interface Process {

2 ...

3 id @4 () -> (id :UInt64);

4 link @5 (other :Process , roundtrip :Bool) -> ();

5 unlink @6 (other :Process , roundtrip :Bool) -> ();

6 }

Listing 5.14: Process.Link and Process.Unlink RPC definition

The capability defined in listing 5.14 and implemented on listing 5.15 allows

linking processes, as long as the connection between them doesn’t fail. As in

Erlang, if a link or unlink is called on already linked or un-linked processes, no

operation will be performed and no error will be returned. Any invocation of

A.Link(B) implies an implicit invocation from A to B.Id(), as well as a round trip

call B.Link(A, true).

1 type process struct {

2 ...

3 linked *sync.Map

4 }

5

6 func (p *process) Link(ctx context.Context , call api.Process_link

) error {
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7 other := call.Args().Other () // skip error management

8 f, _ := other.Id(ctx , nil) // get future of Id RPC

9 otherId := f.Id()

10 p.links.Store(otherId , other)

11 if !call.Args().Roundtrip () {

12 f, _ := other.Link(ctx , func(args api.Process_link_Params

) error {

13 args.SetRoundtrip(true)

14 return args.SetOther(api.Process_ServerToClient(p))

15 })

16 <-f.Done()

17 }

18 return nil

19 }

20

21 func (p *process) Unlink(ctx context.Context , call api.

Process_unlink) error {

22 other , _ := call.Args().Other() // skip error management

23 f, _ := other.Id(ctx , nil) // get future of Id RPC

24 otherId := f.Id()

25 p.links.Delete(otherId)

26 if !call.Args().Roundtrip () {

27 f, _ := other.Unlink(ctx , func(args api.

Process_unlink_Params) error {

28 args.SetRoundtrip(true)

29 return args.SetOther(api.Process_ServerToClient(p))

30 })

31 <-f.Done()

32 }

33 return nil

34 }

35

36 func (p *process) Kill(ctx context.Context , call api.Process_kill

) error {

37 p.kill()

38 return nil

39 }

40

41 func (p *process) kill() {

42 // defer iterating over linked processes am killing them

43 defer p.linked.Range(func(key , value any) bool {
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44 value .(* process).Kill(ctx , nil)

45 return true

46 })

47 // but kill p first

48 p.killFunc(p.pid)

49 }

Listing 5.15: Changes made to process for (un)link implementation

Processes that share an executor, however do not need to pay this performance

penalty. Two alternative calls, defined in listing 5.16, allow linking process A

to B by providing A’s PID. Upon termination, B will call the private function

A.kill() directly instead of going through the A.Kill() RPC. Termination will be

propagated all the same, but linkages set up this way will avoid RPCs. Processes

now have two separate maps to track links and local links, as well as perform

two iterations on termination. Go allows for using the same map for different key

and value types, nevertheless, type casting and checking would introduce a small

penalty, as well as allowing potential collisions between link IDs and local link

PIDs.

1 interface Process {

2 ...

3 linkLocal @7 (other :UInt32) -> ();

4 unlinkLocal @8 (other :UInt32) -> ();

5 }

Listing 5.16: Process.LinkLocal and Process.UnlinkLocal RPC definition

Ideally, B would be able to check if A is a local process implicitly without needing

to discern two distinct methods. The current implementation of go-capnp does

not, to the best of my knowledge, provide the tools necessary for it.

5.4.5 Process Monitoring

Monitoring a process will trigger an event when the monitored process stops. In

Wetware’s case, processes are monitored through a Monitor RPC that is held

by the monitored process, blocking the call at the monitoring client side. When

the monitor ends, its capability is released and the monitor is unblocked. It is a
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concept similar to Erlang’s monitors, which according to the documentation [78]

are defined as follows: “Monitors are fired when the monitored process terminates,

does not exist at the moment of creation, or if the connection to it is lost.”

The monitor implementation is perhaps the most straightforward. Upon receiving

a monitor call, the goroutine processing the call is blocked writing to a queue

(a channel) of monitors. The queue is only consumed at process termination,

unblocking the call and thus notifying the monitor. Monitors can stop monitoring

a process P by releasing their call to P.Monitor.

5.4.6 Process Listing

Process listing takes place at two levels: executor level and cluster level. The clus-

ter level is explained in section 5.5. Regarding the executor level, executors have

a Ps call that provides read-only information about its running processes. This

information, which is encoded as a Cap’n Proto message of type Info, contains

the following fields: pid, ppid, cid, args, and creation time. The executor assigns

the values of each of these fields to processes upon creation, and the process im-

plementation has a info method that returns an Info message populated with the

corresponding values. As shown in the simplified listing 5.17, upon receiving a

Ps call, executors:

1. Create a snapshot of the process tree.

2. Allocate a new list for Cap’n Proto messages of our custom Info type.

3. Iterate over the snapshot and populate the list.

4. Return the list as the result of the call (not shown).

1 func (r Runtime) Ps(ctx context.Context , call core_api.

Executor_ps) error {

2 ...

3 snap := r.Tree.MapSnapshot ()

4 _, seg := capnp.NewSingleSegmentMessage(nil)

5 pl, _ := proc_api.NewInfo_List(seg , int32(len(snap)))

6

7 i := 0

8 for _, v := range snap {
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9 info , _ := v.(* process).info()

10 pl.Set(i, info)

11 i++

12 }

13 ...

14 }

Listing 5.17: Iteration over processes on an executor for process listing

5.5 Integration into Wetware

Integrating the executor into Wetware requires ensuring its compatibility with the

rest of the components and configuring the life-cycle of the executor throughout

the lifespan of a node. It mostly boils down to two steps: initialization and

destruction. Destruction is arguably the simplest of the steps. By ensuring the

context running the node is propagated to the executor, Wazero runtime, and

the spawned processes. It ensures that once the node stops, so do the executor,

runtime, and processes. This is of course, as long as these requirements are

met:

• The Wazero runtime is configured with WithCloseOnContextDone(true), for

propagating stops to processes.

• Any select statements that might prevent a correct shutdown must contem-

plate the case of the context ending.

• Every spawned goroutine is tied to a context bound to the “original” con-

text.

Initialization, on the other hand, refers to a wider set of considerations. First and

foremost is giving nodes access to an executor. Wetware implements each node

as a Server structure, thus giving it access to an executor is as simple as giving

it an attribute of type Runtime, which is the name given to the executor imple-

mentation. Next comes initializing the executor when the Server is initialized

by configuring and instantiating it in the server constructor. The most impor-

tant consideration is correctly configuring the Wazero runtime depending on the
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architecture, as it only supports its “compilation mode” in amd64 and arm64

architecture. This mode is considerably faster than its “interpreter mode” [79]

as it natively executes code as opposed to interpreting it. Listing 5.18 shows a

simplification of the construction of an executor as part of the Server construc-

tor.

1 ...

2 if runtime.GOARCH == "amd64" || runtime.GOARCH == "arm64" {

3 conf.RuntimeConfig = wazero.

4 NewRuntimeConfigCompiler ().

5 WithCompilationCache(wazero.NewCompilationCache ()).

6 WithCloseOnContextDone(true)

7 } else {

8 conf.RuntimeConfig = wazero.

9 NewRuntimeConfigInterpreter ().

10 WithCompilationCache(wazero.NewCompilationCache ()).

11 WithCloseOnContextDone(true)

12 }

13 r := wazero.NewRuntimeWithConfig(ctx , conf.RuntimeConfig)

14 wasi_snapshot_preview1.Instantiate(ctx , r)

15 executor := csp_server.Runtime{

16 Runtime: r,

17 Cache: make(csp_server.BytecodeCache),

18 Tree: csp_server.NewProcTree(ctx),

19 }

20 ...

21 server := Server{

22 ...

23 ExecutorProvider: executor ,

24 }

Listing 5.18: Integrating the executor into the node constructor

5.5.1 Command-Line Interface

The ability to execute a WASM process in a Wetware cluster is also provided as

part of the Wetware CLI. There is already a suite of CLI features that simplify

connection and discovery, making the command implementation straightforward.

Before proceeding, however, we must understand how to connect to a cluster. A
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user entry point to a Wetware cluster is a Terminal. Terminals are capabilities

with a single method: Login. Login receives a Signer that acts as a user identifier,

and grants a session to the user based on its internal policies. The session can be

nil, or provide access to some or all of its capabilities. Listing 5.19 contains the

schemes of both Terminal and Session. Once a user has access to a session, and

that session has been granted access to the executor, the capability holder is free

to run WASM code.

1 interface Terminal {

2 login @0 (account :Cluster.Signer) -> (session :Session);

3 }

4

5 struct Session {

6 local :group{

7 peer @0 :Text; # peer.ID

8 server @1 :UInt64; # routing.ID

9 host @2 :Text; # hostname

10 }

11

12 # Access -controlled capabilities. These will be set to null

13 # unless permission has been granted to use the object.

14 view @3 :Cluster.View;

15 executor @4 :Executor;

16 capStore @5 :CapStore.CapStore;

17 extra @6 :List(Extra);

18

19 struct Extra {

20 name @0 :Text;

21 client @1 :Capability;

22 }

23 }

Listing 5.19: Definiton of Terminal and Session

Listing 5.20 contains a simplification of the full ww cluster run command, where

only 2 lines are dedicated to networking and logging it, thanks to the streamlining

of the process by Wetware. The rest of the code focuses on opening a WebAssem-

bly file, parsing command-line arguments, and executing the WebAssembly con-

tent. It is worth noting that the CLI passes the arguments it received, excluding
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the name of the WASM file, to the process. The command uses 0 as the PPID

of the new process, which the executor interprets as a new top-level process. If

the WASM process is to create more sub-processes, it should pass its own PID as

their PPID. When the command exits it releases the process capability and closes

the connection, canceling the context of the real process held by the executor to

end, and the WASM process to be stopped. This is then propagated to its child

processes.

1 func run() cli.ActionFunc {

2 return func(c *cli.Context) error {

3 wasm , _ := os.ReadFile(c.Args().First())

4 // Prepare argv for the process.

5 args := [] string {}

6 if c.Args().Len() > 1 {

7 args = append(args , c.Args().Slice() [1:]...)

8 }

9 // Get a session.

10 h, _ := vat.DialP2P ()

11 sess , close , _ := BootstrapSession(c, h)

12 defer close()

13 // Execute the process

14 p, release := sess.Executor ().

15 Exec(c.Context , api.Session(sess), wasm , 0, args ...)

16 defer release ()

17 return p.Wait(c.Context)

18 }

19 }

Listing 5.20: Cluster-run command

5.5.1.1 Guest Bootstrapping and QoL

Wetware processes have to log into clusters through terminals, as any Wetware

user would. It is something that should be done by every process and has the po-

tential to involve arguably hard to understand instructions, potentially presenting

an initial roadblock for developers that choose to use Wetware. For this reason,

login into a terminal and other common tasks are implemented as one-line, single

invocation functions that users can import from the guest/system package. The
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web crawler application discussed later on this chapter imports guest/system as

ww; and uses these features by getting a Wetware session simply by calling ww.

Bootstrap(ctx) as well as retrieving the command-line arguments with ww.Args().

It could also get its own attributes through the following functions: ww.PID(),

ww.PPID(), ww.CID().

5.5.2 Process Listing

Besides the exec method, Wetware can list processes through its command line

tool. The command, ww ps, connects to a Wetware cluster and lists all running

processes across all the nodes in the cluster by iterating over the view of the

initial node and calling the Ps method of the executor of each of the nodes.

Listing 5.21 shows a cropped sample of the output when running the web crawler

application.

1 Executor PID PPID Creation CID Args

2 d0ef56e03d7a10e8 3 2 Mon Oct 9 21:... z26L4mZvv ... [...]

3 d0ef56e03d7a10e8 4 2 Mon Oct 9 21:... z26L4mZvv ... [...]

4 d0ef56e03d7a10e8 5 2 Mon Oct 9 21:... z26L4mZvv ... [...]

5 d0ef56e03d7a10e8 6 2 Mon Oct 9 21:... z26L4mZvv ... [...]

6 d0ef56e03d7a10e8 7 2 Mon Oct 9 21:... z26L4mZvv ... [...]

7 d0ef56e03d7a10e8 8 2 Mon Oct 9 21:... z26L4mZvv ... [...]

8 d0ef56e03d7a10e8 9 2 Mon Oct 9 21:... z26L4mZvv ... [...]

9 d0ef56e03d7a10e8 2 1 Mon Oct 9 21:... z26L4mZvv ... [...]

Listing 5.21: Output of the “ww ps” command

5.6 Caching

Profiling the basic Executor.Exec method showed that the vast majority of the

time was spent compiling the WASM bytecode, as shown in figure 5.13a. The

function performs computational work and has no internal asynchrony, thus any

other goroutine cannot take advantage of that time. For this reason, Wazero

provides the option of using a compilation cache which will significantly shorten

the compilation process by only requiring some final decoding and validation

steps. The compilation cache, provided natively by Wazero, is set through the
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WithCompilationCache(wazero.NewCompilationCache()) runtime option. Figure 5.13b

contains a flamegraph of Executor.Exec when the provided bytecode has already

been compiled, and the compilation cached. It is not only clearer, but an order of

magnitude more performant, as seen later down this section in figure 5.14.

(a) No caches

(b) Compilation cache

Figure 5.13: Flamegraphs of Executor.Exec with and without caching

compilation

Wetware clusters may have varying network latency and throughput. Currently,

spawning a process through the Exec RPC requires sending the full bytecode of

the process over the wire. To counter this drawback, we created a second cache
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to store un-compiled bytecodes. The cache has a simple interface akin to a map,

as shown in listing 5.22, with put, get, and has methods. It associates bytecodes

to their content ID, or CID, generated from hashing the raw bytes composing the

bytecode.

Every process knows its own CID, and is guaranteed to have its own bytecode on

the cache of the executor running it. Any process can thus replicate itself with

just its CID on its local executor, or it can retrieve its bytecode from the local

cache and propagate into new executors.

1 interface BytecodeCache {

2 put @0 (bytecode :Data) -> (cid :Data);

3 get @1 (cid :Data) -> (bytecode :Data);

4 has @2 (cid :Data) -> (has :Bool);

5 }

Listing 5.22: Bytecode Cache definition

A bytecode can be reduced to a wrapper around a thread-safe map having CIDs

as keys and bytecodes as values. By keeping track of when bytecodes were last

stored or loaded, it can drop the ones that have gone unused the longest time

when it reaches its maximum size; in order to accommodate new bytecodes. The

implementation of this size management method will be dropped from the current

design in favor of keeping track of how many ongoing processes belong to each

bytecode, to be implemented as future work later down the road.

Spawning processes through CIDs is done through Executor.ExecCached instead of

Exec. As a preventive optimization, the executor automatically stores bytecodes

received through Exec. This way it guarantees that running processes have their

bytecode stored in the cache. In the same way, it guarantees any process run

through ww cluster run <wasm> can replicate itself locally without worrying about

retrieving the bytecode. Processes can verify the bytecode retrieved from a cache

by generating its CID and comparing it to their own. On the other hand, sensitive

processes should only be run on trusted clusters as they have no way of verifying

that an executor runs the bytecode unmodified [80].

1 interface Executor {

2 ...
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3 execCached @1 (cid :Data , ppid :UInt32 , bctx :BootContext) ->

(process :Process);

4 }

Listing 5.23: ExecCached method definition

Wetware is balancing the idea of implementing a global cache on top of the

bitswap protocol [81], allowing executors to share and exchange shards of byte-

codes and potentially improving performance as the number of nodes in a cluster

grows. The proposal would simplify the development by enabling the replication

of processes in new executors by providing just a CID. For these reasons it might

be implemented in the future.

Profiling the same function as in figure 5.13 to observe the performance im-

provements of the bytecode cache will provide no result, as the bytecode cache’s

purpose is to reduce the bandwidth used by calls to Exec, which will not reflect

on the profile of the function itself. Instead, figure 5.14 shows the results of

benchmarking remote calls to Exec. Bear in mind that the effectiveness of the

bytecode cache will vary. In the case of figure 5.14 the bytecode was small and

RPCs were performed on the same device. The performance gain will be inversely

proportional to the bytecode size and the decrease in network throughput.

Figure 5.14: Exec(cached) execution time improvements with caches
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The final diagram containing the main components of an executor is shown in

figure 5.15, caching WASM programs on a Wetware and Wazero level.

Figure 5.15: Final main component diagram of the executor

5.7 Proof-of-Concept

This section contains a proof of concept of the executor’s capabilities when run-

ning on one or multiple Wetware nodes. The most basic demonstration is a

simple application that spawns new processes to perform an action, ensuring pro-

cesses can communicate and have access to the same object capabilities. After

that, development takes a detour from validation to create a Cap’n Proto and

WebAssembly compatible Raft library [64] based on Etcd’s Raft implementa-

tion [24]. Lastly, the validation is expanded to make better use of its resources,

use a distributed log, and run in a stable manner; simulating a more complex

application that runs on and benefits from Wetware. The application is available

in a public git repository [63].

5.7.1 Prerequisites

Before delving into the proofs of concepts, there are some functional prerequisites

necessary to make everything work.
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5.7.1.1 Channels

Channels are inter-process communication tools that were already part of Wet-

ware when this thesis started. Creating them is straightforward, it’s enough to

import the comm package and instantiate them as channel := new(comm.SyncChan).

Once instantiated, their capability is generated with comm.NewChan(channel).

5.7.1.2 Capability Storage

Capability stores were developed as part of this thesis. A capability storage

is used to store and retrieve object capabilities. By holding object capabilities

it keeps their connections alive and prevents their providers from being freed

or garbage collected by ensuring they have at least one active reference. Each

Wetware node has a CapStore capability, defined in listing 5.24. Both storing

and retrieving capabilities require providing a unique string, used to identify the

capability.

1 interface CapStore {

2 set @0 (id :Text , cap :Capability) -> ();

3 get @1 (id :Text) -> (cap :Capability);

4 }

Listing 5.24: Capability storage definition

5.7.2 HTTP Requests

WebAssembly modules cannot natively perform HTTP requests. It is a good

opportunity to showcase the simplicity of adding functionality to the Wetware

process. We implemented a simple HTTP Requester capability by wrapping

some native Go HTTP functionality, namely GET and POST requests, in Cap’n

Proto RPCs, shown in listing 5.25.

1 interface Requester {

2 get @0 (url :Text) -> (response :Response);

3 post @1 (url :Text , headers :List(Header), Body :Data) -> (

response :Response);

4

5 struct Header {

6 key @0 :Text;
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7 value @1 :Text;

8 }

9 struct Response {

10 status @0 :UInt32;

11 body @1 :Data;

12 error @2 :Text;

13 }

14 }

Listing 5.25: Capability storage definition

5.7.3 Initialization

Running the web crawler applications developed later in this section requires two

steps:

1. Initialize the HTTP provider as a standalone Go application, and save its

capability in the capability storage. Both these actions are performed by a

short Go program that uses Wetware as any Go process would.

2. Run the crawler as a Wetware program through the command line: ww

cluster run <crawler.wasm>.

The repository [63] contains a shell script named run.sh that takes care of both

steps. To run the web crawler, it creates a Wetware cluster through ww start

and starts the crawler with ./run.sh <nprocs> <entrypoint>, where nprocs is the

number of processes the web crawler will use and entrypoint is the URL where

the application will start its crawl. The repository also contains a Makefile that

builds the required executable and WebAssembly files.

5.7.4 Basic Validation

Basic validation is performed with a rudimentary web crawler that starts with a

coordinator node. The coordinator then spawns an arbitrary number of workers,

as well as a channel for each one of the workers. It passes the identifiers of the

HTTP requester capability and the capability of their corresponding channel as
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arguments, so worker processes can fetch both capabilities when they start. Page

crawling is carried out with regular expressions, see crawler/http.go [63].

The coordinator will:

1. Create N channels. The queue will have one value at creation, the starting

URL. Spawn N workers, assign one channel to each.

2. Create two queues: one for URLs and one for channels.

3. Put every channel in the channel queue.

4. Put the entry-point URL in the URL queue.

5. Loop:

(a) Get a channel from the channel queue, get a URL from the URL queue,

send the URL through the channel.

(b) Create a new goroutine that will:

i. Wait for a message from the channel.

ii. Put the channel back in the queue.

iii. If the message is empty, do nothing.

iv. If the message contains URLs, put the URLs in the queue.

6. End sub-processes.

Workers will:

1. Retrieve the HTTP requester and channel capabilities.

2. Wait for a URL to arrive through the channel.

3. Crawl the URL, extract links, and send them through the channel.

4. GOTO 2.

Implementation of the Wetware application is relatively straightforward. While

inefficient, it makes use of the following features developed during the thesis:
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• Utilize the ww cluster run command to run a Wetware process on a Wetware

node.

• Bootstrapping and utilizing object capabilities from WASM guests, via

asynchronous host-guest communication.

• Spawn sub-processes from a Wetware process.

• Communicate between processes.

• Manage a processes by killing them.

Not all applications will match this centralized coordinator-worker model, how-

ever. Distributed applications will usually need some level of resiliency and con-

sensus, so they can continue working successfully when a process fails. In this

application, the crawler will stop if the coordinator stops. Furthermore, there is

a clear bottleneck in which every worker needs to wait for an assignment from

the coordinator, which may overload the coordinator as the number of workers

increases, as well as cause additional latency when running the crawler in multiple

nodes. The following section, detailing our Raft library, lays the foundation to

overcome these shortcomings.

5.7.5 Raft Over Cap’n Proto

Running Raft with object capabilities as transport required complementing the

etcd-raft library. Many of the implementation details are not relevant but can

still be found in the repository hosting our implementation [64], which started off

as an adaptation of a library that used Protocol Buffers as a transport [82] but

quickly diverged and turned into a noticeably distinct project. The final result is

a general-purpose library that can be used not only for Wetware processes, but

any type of application.

Our implementation is based on Node structures, which represent Raft nodes.

They are exposed through the object capability shown in listing 5.26. If Raft

nodes are started from and embedded into another Go application, this appli-

cation can interact directly through Go methods without requiring capability
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usage. Raft nodes do, however, interact with each other exclusively through ca-

pabilities. A connection between two Raft nodes occurs when they hold each

other’s capabilities.

1 interface Raft {

2 add @0 (node :Raft) -> (nodes :List(Raft), error :Text);

3 # Propose adding $node to the Raft.

4 remove @1 (node :Raft) -> (error :Text);

5 # Propose removing $node from the Raft.

6 send @2 (msg :Data) -> (error :Text);

7 # Send a message to the Raft node.

8 put @3 (item :Item) -> (error :Text);

9 # Put an k/v pair on the cluster.

10 items @4 () -> (objects :List(Item));

11 # List every k/v pair in the cluster.

12 members @5 () -> (members :List(Raft));

13 # List every memeber of the cluster.

14 id @6 () -> (id :UInt64);

15 # Get the Raft ID of the node.

16 }

Listing 5.26: Raft node capability definition

While it is not feature-complete, we followed the implementation instructions in

the etcd-raft README [24]. The most relevant missing feature is creating and

recovering from snapshots, which is not required for our web crawler. Nodes

are responsible for sending out heartbeats, finding peers, processing and storing

values, as well as handling events. Every other Raft feature is provided by Etcd’s

library, which just needs importing and initializing.

Sending heartbeats is very straightforward: a loop will send out a heartbeat

periodically, based on a period value configured when creating the node.

Finding peers, and processing and storing values are more challenging features.

Because of Wetware’s process isolation and quickly evolving nature, we opted

for leaving implementation up to the user by requiring them to implement the

types listed in listing 5.27. All of them are implemented by the final version of

our web crawler, as described later in section 5.7.6. Nodes rely on RaftStore to

store values, RaftNodeRetrieval for obtaining the capabilities of a node given that
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node’s ID, and OnNewValue may optionally be used to run an arbitrary function

each time a new value is received.

1 type RaftStore func(storage raft.Storage , hardState raftpb.

HardState , entries [] raftpb.Entry , snapshot raftpb.Snapshot)

error

2 type RaftNodeRetrieval func(context.Context , uint64) (api.Raft ,

error)

3 type OnNewValue func(Item) error

Listing 5.27: Configurable raft function types

The heart of the library is the Node.Start method, simplified in listing 5.28. It

initializes the listing, and loops indefinitely reacting to events. The pause and

stop cases will temporarily pause or permanently stop the node, and canceling

the context for whatever reason will cause stop to trigger. The most important

method is doReady, whose flow diagram is represented in figure 5.16. It must be

noted that the addNode method shown in the diagram will receive a Raft node

ID and call RaftNodeRetrieval to obtain its capability.

1 func (n *Node) Start(ctx context.Context) {

2 n.Init()

3 var err error

4 for {

5 select {

6 case <-n.ticker.C:

7 n.Raft.Tick()

8 case ready := <-n.Raft.Ready():

9 err = n.doReady(ctx , ready)

10 case pause := <-n.pauseChan:

11 err = n.doPause(ctx , pause)

12 case <-ctx.Done():

13 err = ctx.Err()

14 case err := <-n.stopChan:

15 defer close(n.stopChan)

16 defer n.doStop(ctx , err)

17 return

18 }

19 if err != nil {

20 go func() {

21 n.stopChan <- err
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22 }()

23 }

24 }

25 }

Listing 5.28: Node.Start simplification

Figure 5.16: Node.doReady flowchart

By default, etcd-raft is designed to use fast, permanent storage for the log. It

does, however, provide the means to use custom storage implementations as well

as having an in-memory implementation. The solution developed for this project

exposes the configuration of the storage via a WithStorage(raft.Storage) method,

very similar to how the original implementation does. Because it was designed

with Wetware processes in mind, nodes use in-memory storage by default as

writing to disk would break process isolation. This is the default behavior but is

not always enforced, as Wazero allows exposing parts of the file system to WASM

modules and could therefore be supported by Wetware in the future. The raft.

Storage might also be implemented with underlying uses of object capabilities to

a resource that accesses permanent storage, though the performance cost when

compared to direct access would be significant. It should lastly be noted that
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messages are encoded using JSON, and etcd-raft provides the means to encode

them in the Protocol Buffer format.

Raft is now ready to be used in our application, as long as we provide RaftN-

odeRetrieve, RaftStore and optionally OnNewValue functions.

5.7.6 Feature-Rich Validation

The final version of the crawler, found in the git repository main branch [63],

has no centralized coordinator. The initial process does have the responsibility of

creating the rest of the processes, but once that is done all nodes crawl URLs and

share their findings through the distributed log. They act as autonomous actors,

and the web crawling application will keep functioning even if multiple processes

fail or there is some kind of network partition.

Before proceeding into the inner workings of the application, let’s first describe

the RaftStore, RaftNodeRetrieval, OnNewValue implementations. RaftStore uses

the default implementation provided by etcd to write the values to memory.

Regarding RaftNodeRetrieval, every process stores the capability of its Raft node

in the capability storage during initialization, using its Raft ID as the key. The

actual implementation is shown in listing 5.29. OnNewValue handles URLs, as

described in the next paragraph.

1 func (c *Crawler) retrieveRaftNode(ctx context.Context , id uint64

) (raft_api.Raft , error) {

2 r, err := c.CapStore.Get(ctx , c.idToKey(id))

3 if err != nil {

4 return raft_api.Raft{}, nil

5 }

6 return raft_api.Raft(r).AddRef (), nil

7 }

Listing 5.29: RaftNodeRetrieval implementation

Each crawler node keeps track of URLs in four separate structures. Firstly, a

fixed-sized local queue LQ with the URLs this particular crawler will crawl next.

Nodes inform others of their intention to crawl a URL by claiming it. Each

crawler stores the claims from the rest of the crawlers in a CM claim map, which
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times each claimed to the time it was claimed. Claims have a maximum duration

of 5 minutes, after which they are evicted to a global queue GQ. The global queue

contains every unclaimed URL that’s been discovered but hasn’t been crawled

yet. When nodes run out of URLs in their LQ, they claim a number of URLs

from GQ. URLs visited by any node are stored in a set of visited URLs V S.

When crawling a page, nodes extract the URLs it references and filter out the

ones already in V S. They put max(x, y) URLs in their LQ, where x is half of

the discovered URLs and y are the free slots left in LQ.

Coming back to OnNewValue, nodes communicate their visits, findings and claims

through the distributed log; removing the need for Wetware channels. Upon

receiving a new value representing one of those three actions, they update their

V S, GQ and CM respectively. This is implemented in OnNewV alue.

When developing this iteration of the web crawler we came upon the issue: if

processes are running on different executors, and each executor has one capabil-

ity storage associated, should they all store every capability on every capability

storage of the cluster, or share the same one? We opted for the former because it

would be simpler to implement in this specific case. Upon creation, each process

fetches and store a session from every peer in the cluster through their original

session, storing them in their Cluster.Sessions attribute. Registering capabilities

is done through a storeCap method that iterates over the sessions and stores the

capabilities in all of them. We modified the HTTP requester provider as well,

as that also needs to be accessible from every capability store. This issue may

present a roadblock for new Wetware users, which has been duly noted and will

be worked on in the near future.

The initial process evenly spawns other processes across the cluster, as shown by

listing 5.30. It shows a fragment of the method used by the initial process to

spawn the rest of the processes.

1 func (c *Crawler) spawnCrawlers(ctx context.Context , n uint64)

error {

2 sessions := c.Cluster.Sessions

3 sessions = append(sessions , c.Session)

4 for i := uint64 (1); i < uint64(n); i++ {

5 s := sessions[int(i)%len(sessions)]
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6 e := s.Executor ()

7 _, release := e.ExecCached(

8 ctx ,

9 core.Session(s),

10 ww.Cid(),

11 ww.Pid(),

12 <args >...,

13 )

14 defer release ()

15 ...

16 }

17 ...

18 return nil

19 }

Listing 5.30: Fragment of spawnCrawlers

Finally, we did some performance tuning to the application taking advantage of

its heavily IO-bound workload. Crawlers now perform multiple “simultaneous”

HTTP requests, that while not truly parallel, do increase the output of the nodes.

Increasing the LQ size also seems to reliably improve performance up to a point

by reducing the number of items pulled from GQ. The web crawler has, however,

the purpose of validating the executor and its capabilities and not measuring its

performance.
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Chapter 6

Evaluation

The evaluation was performed utilizing the hardware specified in section 4.5.

Unless explicitly stated otherwise, tests and measurements were carried out on

the desktop PC. All the tool-chain and software libraries required to build and

perform these tests are available through a custom Docker image based on Alpine

Linux, available to use at a personal Wetware fork [62].

6.1 Validity

This section evaluates whether the executor and the rest of the software developed

throughout this thesis fulfill their objectives. Unitary tasks, such as ending or

linking processes, were simple to validate with very short-lived tests. Nonetheless,

the executor is not meant to run in isolation. It will be used as part of a dis-

tributed applications middleware and therefore requires a distributed application

to be validated: the web crawler.

The final web crawler version was run in a Wetware cluster formed by the three

devices listed in section 4.5, which shared the same local network. The final

demonstration ran 24 processes evenly distributed across devices and created the

initial process on the desktop PC. It runs for 30 minutes. The target URL was

provided by a custom HTTP server running on the Raspberry Pi and written
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by us [83], to effectively measure URL conflicts between nodes as well as overall

performance.

Listing 6.1 shows a fragment of the output of ww ps when running the web

crawler application in the three-node cluster. The full IDs of the executors

running in the desktop PC, laptop, and Raspberry pi are 38908fe2b3d81d435,

7158b49af891e7b25, and 9214905b4efea7a19, respectively. The initial process was

spawned in the desktop PC.

1 Executor PID PPID Creation CID Args

2 38908... 2 1 Wed Oct 11... z26... [iPH ...]

3 38908... 3 2 Wed Oct 11... z26... [iPH ...]

4 92149... 2 1 Wed Oct 11... z26... [j92 ...]

5 92149... 3 1 Wed Oct 11... z26... [j92 ...]

6 7158b... 2 1 Wed Oct 11... z26 ... [mLw ...]

7 7158b... 3 1 Wed Oct 11... z26 ... [mLw ...]

Listing 6.1: Output of “ww ps” when running the web crawler

As a fancy addition for debugging and visualizing the results, we’ve also added a

Neo4j capability for nodes to store their results in a graph database that allows

us to more easily evaluate the correctness of the crawler. Database credentials

are provided as command-line arguments to run.sh and therefore ww cluster run,

which the initial process then propagates to the rest of the processes. Write

operations against the database are performed by sending POST requests reusing

the HTTP requester capability, see crawler/neo4j.go [63].

These last two factors, combined with the logs produced by the crawler processes

and the output of ww ps, allow us to verify that:

• The web crawler was performing its function correctly.

• The application was running in a distributed manner throughout a Wetware

cluster.

• The application was running on different hardware architectures.

• Processes in the cluster could transparently communicate with each other,

as well as make use of other capabilities provided outside their node.
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• Processes reached consensus through Raft nodes.

• The executor is stable, allowing our crawler to run at a steady pace for 30

minutes.

• The executor is successfully integrated into Wetware.

• The executor and processes can be managed through their object capabili-

ties.

The initial rudimentary version of the executor allowed us to escalate the web

crawler to hundreds of processes, but the final version has significantly more

communication overhead and heavier process requirements, starting show signs

of slowing down after a couple of dozen of processes; most likely due to the

communication and synchronization overhead.

6.2 Performance Characterization

This section provides some insights into the performance results obtained by

evaluating the executors under intensive workloads, in addition to explaining

how the tests were carried out.

Measuring how the basic executor performs provides insight into how Go’s sched-

uler affects the runtime and things to consider when developing programs that

will run on the Wetware executor. The number of logical cores was limited either

through manual CPU status configuration through the /sys/devices/system/cpu

/cpuX/online file, or through setting the environment variable GOMAXPROCS, which

limits the amount of P s a Go process can use at any given time. Alternatively,

the Docker image allows limiting the process’ access to certain cores through the

cpuset parameter.

Limiting the number of P s on an OS level might have a heavier footprint on the

tests that use fewer cores due to having to use the same cores for both running

the test program and doing regular OS tasks. On the other hand, limiting P s

through GOMAXPROCS allows the processes to run in “freer” cores but might involve

more context switches: while GOMAXPROCS ensures only a certain number of them
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are used at any given time without enforcing which ones are used. Figure 6.1a

shows that while only one logical core is in use by the application at any given

time, the core being used changes over the life of the application. Sub-figure 6.1a

shows that the Wetware processes are mostly kept on the same core, avoiding

context switches and benefiting from data locallity.

(a) GOMAXPROCS=1 (b) GOMAXPROCS=8

Figure 6.1: CPU usage of an Executor running 8 Wetware processes

The executor will be benchmarked by running a CPU-intensive process (Busy),

shown in listing 6.3, in several concurrent processes. It is a work-bound program

that requires no synchronization, allowing us to test the executor with a minimal

synchronization footprint from the WASM guests.

The experiment can be reproduced by executing ww benchmark -procs M -iters N

-size O -yield Q, where M is the number of Wetware processes to spawn each

iteration, N is the number of iterations, O is the total number of times a process

will loop, and Q is the frequency with which each process will voluntarily yield

execution.

A simplified version of the main benchmark loop is shown in listing 6.2, with some

initialization, error handling, and time measuring and processing were left out for

simplicity’s sake. The first step is to set up a Wetware node and its executor on

that very process. After that, the process will perform N iterations and on each

of them it will spawn M processes that will run the busy program, simplified in

listing 6.2.

1 cid := executor.Cache.ExposedPut(busyWasm)

2 for i := int64 (0); i < iters; i++ {

3 var wg sync.WaitGroup
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4 for j := int64 (0); j < procs; j++ {

5 wg.Add (1)

6 go func(k int64) {

7 defer wg.Done()

8 p, _ := executor.ExecCached(c.Context , cid , args)

9 csp.Proc(p).Wait(c.Context)

10 }(j)

11 }

12 wg.Wait()

13 }

Listing 6.2: Main host busy function

Busy will run its Wetware initialization, explained later down this chapter, and

perform a loop with O iterations. If the current iteration is a multiple of Q, it

will voluntarily yield. Yielding can be used to simulate a more realistic workload,

occasionally breaking the tight loop Go’s scheduler may struggle with.

1 func main() {

2 ww.Bootstrap(context.Background ())

3 for i := int64 (0); i < size; i++ {

4 if yield != 0 && i%yield == 0 {

5 runtime.Gosched ()

6 }

7 }

8 }

Listing 6.3: Main guest busy function
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(a) Scenario A

(b) Scenario B

Figure 6.2: Simultaneous utilization of logical CPU cores

Let’s present two scenarios for the performance characterization of the application

on a processor with 4 physical and 8 logical cores. Scenario A has all 8 virtual

cores enabled. Scenario B has one logical core of each physical core enabled,

and the other one disabled. Both scenarios run busy with the following param-

eters: procs = 32, iters = 1, size = 109, yield = 0. Figure 6.2 shows the CPU

utilization results reported by Intel’s VTune Profiler for both scenarios, with a

1kHz sampling rate. None of the scenarios achieve full CPU utilization, as there

are other OS processes running and sharing the CPU. It can be observed, how-

ever, that scenario B is closer to ideal CPU utilization than scenario A, showing

average physical core utilization values of 95.0% and 91.6% respectively. Further-

more, Scenario A spends significantly more time under-utilizing one of the cores
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compared to scenario B. This indicates effective utilization of every available core

diminishes as the number of available cores increases.

On the other hand, table 6.1 shows metrics favoring scenario A. This scenario

reported that 6.6% of inactive wait time had poor CPU utilization against the

21.1% of scenario B. This metric is the sum of two other metrics: Inactive Sync

Wait Time and Preemption Wait Time. Inactive Sync Time refers to the time a

thread has been inactive and excluded from execution by the operating system

scheduler for synchronization, while Preemption Wait Time is caused by thread

preemption. Both of the factors are reduced as the number of available cores

increases, somewhat countering the poorer CPU utilization of figure 6.2. Both

of them are also likely caused by having too many threads contending for the

cores, also known as thread oversubscription [84]. The Go runtime utilizes 14 OS

threads for scenario A and 10 threads for scenario B, as in these scenarios it uses

GOMAXPROCS OS threads to run user code and 6 additional threads to run

runtime code. Go doesn’t provide any way of changing the number of runtime

threads without delving into the language’s source code, thus this number is a

permanent factor the program will deal with.

Scenario A Scenario B

Metric Seconds Normalized Seconds Normalized

Inactive Wait Time 2404.136 1.00 4426.744 1.00

IWT with Poor CPU Usage 158.673 0.0658 934.043 0.211

Inactive Sync Wait Time 86.310 0.0359 401.82 0.0908

Preemption Wait Time 72.363 0.0301 532.223 0.0907

Table 6.1: Benchmark thread wait time metrics

Table 6.2 shows a slightly more efficient usage of L1, L2 and L3 caches, as well as

memory, in scenario A. “Memory Bound” refers to the fraction of the pipeline slots

that might be stalled by load/store instructions throughout the execution of the

program, while “Cache Bound” shows the percent of clock ticks spent retrieving

data from the caches, including coherence penalties for shared data.
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Pipeline Slots Scenario A Scenario B

Memory Bound 7.6% 8.0%

Cache Bound 16.2% 19.2%

Table 6.2: Memory and cache bound stalls

6.2.1 Scalability Analysis

A strong scalability analysis with the busy program and the following parameters

shows interesting results: procs = 32, iters = 1, size = 2 · 109, yield = 0.

We performed the analysis with the aforementioned fixed-sized problem and two

different core-count control methods:

• GOMAXPROCS : limit the number of cores through the Go runtime. Schedul-

ing, networking, system calls and garbage collection do not respect this core

limit. Shown as gomaxprocs in graph labels, and referred to as Go-level con-

trol in this section.

• CPU hot-plugging : disable logical cores through setting /sys/devices/system

/cpu/cpu<n>/online to 0. Cores 1 to 4 are located in different physical cores,

which they share with their respective counterpart from cores 5 to 8. It is

labeled as cpu hot-plug and referred to as OS-level control throughout this

section.

Both scenarios were run on an Intel Core i7-6700K with 4 physical and 8 logical

cores running GNU/Linux with a minimal set of services: Bluetooth, window

managers and other unnecessary background services were disabled. Configuring

the application’s garbage collector to run more or less frequently did not provide

any apparent benefit after some testing and was therefore left as-is.

101



6.2. Performance Characterization 6. Evaluation

Figure 6.3: Strong scalability analysis through GOMAXPROCS

Figure 6.3 shows the speedup when controlling the number of cores through GO-

MAXPROCS. The speedup calculated as speedupn = t1
tn

where t1 is the execution

time with one core and tn is the execution time with n cores. The figure shows

a linear speedup close to the ideal speedup up to the physical core limit, with a

speedup degradation once that threshold is crossed. There are multiple potential

causes:

• Hyper-threading : while hyper-threading provides performance improvements

in this application, the improvements can be limited when compared to real

parallelism.

• Highly parallel workload : the busy processes are work-bound and highly

independent. They can be fully run in parallel and benefit more from

additional physical cores than hyper-threading.

• Runtime goroutines : while user code is running exclusively in the number

of specified cores, the runtime may run on other cores. The fewer cores

the application uses though GOMAXPROCS, the less impact the runtime

will have on its performance as it will be running on separate cores. The
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more cores the application uses, the more likely user code is to conflict with

runtime code.

• OS footprint : the operating system has a footprint that can minimally

impact the application as more cores are taken by the application and need

to be preempted to run OS tasks.

Figure 6.4: Strong scalability analysis through CPU hot-plugging

Figure 6.4 shows a reverse change in the speedup slope when compared to fig-

ure 6.3. Going over the physical core barrier actually results in super-linear

speedup [85], as opposed to the previous speedup degradation. Figure 6.5 shows

the total runtime for each one of the cases, a very helpful measure to understand

why the super-linear speedup occurred. The single-core case execution takes al-

most thrice the runtime when the system is truly single-cored, when compared

to the GOMAXPROCS method. This difference is most likely caused by:

• Runtime and user code conflicts : any network operation, asynchronous sys-

tem call, scheduling decision, synchronization operation, or garbage collec-

tor run is executed on the same cores running the user code; which has the

most impact with low core counts.
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• Concurrency penalty : Wetware is a highly concurrent application that de-

rives in higher performance penalties when there are not enough paralleliza-

tion resources available.

• OS footprint : OS tasks conflict more often with our application core the

lower the core count is.

Figure 6.5: Runtime comparison of core control with OS-level CPU

management vs GOMAXPROCS

Both core control methods have the same result when they allow the application

to fully utilize all the available hardware.

6.2.2 Benchmark Against Native Programs

This section benchmarks Wetware processes against their Go (version go1.21.1

linux/amd64) and Python (version 3.11.5) counterparts. The go implementation

is extremely similar to the original source of the Wetware busy implementation.

It spawns procs goroutines, each of which loops for size iterations and performs

the same busywork as in the Wetware application. The main goroutine waits for

the rest to finish before ending the program, as seen in listing 6.4.
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1 package main

2

3 const size , procs = int64 (2000000000) , 32

4 var yield = int64 (0)

5

6 func main() {

7 wait := make(chan struct{}, procs)

8 for i := 0; i < procs; i++ {

9 go func() {

10 for j := int64 (0); j < size; j++ {

11 if yield != 0 && j%yield == 0 {

12 j = j

13 }

14 }

15 wait <- struct {}{}

16 }()

17 }

18 for i := 0; i < procs; i++ {

19 <-wait

20 }

21 }

Listing 6.4: Benchmarked implementation of busy in Go

The Python implementation of listing 6.5, executed with the default Cpython

interpreter, spawns processes using the multiprocessing library, and waits for

them to finish their iterations. The variable yield has been changed by y due to

yield being a reserved keyword in Python.

1 import multiprocessing

2

3 def loop():

4 j, y = 0, 0

5 while j < 2_000_000_000:

6 j += 1,

7 if y != 0 and j % y == 0:

8 j = j

9

10 procs = []

11 for i in range (32):
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12 t = multiprocessing.Process(target=loop)

13 t.start ()

14 procs.append(t)

15 for t in procs:

16 t.join()

Listing 6.5: Benchmarked implementation of busy in Python

Results show that the Wetware program performs somewhere in the middle be-

tween Python and Go. The single-core case places Wetware approximately an

order of magnitude faster than Python, and an order of magnitude slower than

Go. Nevertheless, the gap between Wetware and Go gets progressively smaller as

more cores are added.

Figure 6.6: Runtime comparison for equivalent programs

6.2.3 Concurrency Characterization

Performing goroutine and block profiling provides helpful information about what

use is being made of concurrency control mechanisms. Block profiles, unfortu-

nately, do not include networking or asynchronous system call data. They do
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Flat Flat% Sum% Cum Cum% Name

11645 82.55% 82.55% 11645 82.55% runtime.selectgo

1656 11.74% 94.29% 11645 11.74% runtime.chanrecv1

515 3.65% 97.29% 515 3.65% sync.(*Mutex).Lock

279 1.98% 99.92% 279 1.98% runtime.chanrecv2

0 0.00% 99.92% 131 0.93% net.(*Buffers).WriteTo

0 0.00% 99.92% 402 2.85% io.ReadFull

0 0.00% 99.92% 402 2.85% io.ReadAtLast

0 0.00% 99.92% 5287 38.19% golang.org/x/sync/errgroup

.(*Group).Go.func1

0 0.00% 99.92% 108 0.77% github.com/wetware/pkg/

cluster.(*Router).advance

0 0.00% 99.92% 217 1.64% github.com/wetware/

pkg/boot/

socket.(*Socket).tickloop

Table 6.3: Top concurrency contentions on Wetware server running a

webcrawling application

nonetheless give a clear view of the difference of use between channels and mu-

texes. Tables 6.3 and 6.4 are taken directly from the results generated by pprof ,

and must be taken with a grain of salt. This is especially true when analyzing

block profiles, as in this case, as it is by far the least documented profiling type

of the tool [86].

Table 6.3 shows the number of contentious when a goroutine was left waiting

for a resource before resuming its execution. There is an overwhelming pre-

dominance of channel contentions, amounting to a cumulative 97.94% of the

contentions.

Table 6.4 shows similar results regarding the time spent waiting for resources by

goroutines. This time, the cumulative delay caused by channels is 94.83%, propor-

tionally slightly less than that of the rest of synchronization mechanisms.

We conclude that there is an acceptable concurrent resource utilization, making

107



6.2. Performance Characterization 6. Evaluation

Flat Flat% Sum% Cum Cum% Name

3942.91s 72.84% 72.84% 3942.81s 72.84% runtime.selectgo

1089.36s 20.12% 92.96% 1086.36s 20.12% runtime.chanrecv1

209.48s 3.87% 96.83% 209.48s 3.87% runtime.chanrecv2

171.51s 3.17% 100.00% 171.51s 3.17% sync.(*WaitGroup).Wait

0 0.00% 100.00% 92.23s 1.70% io.ReadFull

0 0.00% 100.00% 92.23s 1.70% io.ReadAtLast

0 0.00% 100.00% 92.23s 3.17% golang.org/x/sync/ er-

rgroup .(*Group).Wait

0 0.00% 100.00% 171.51s 6.33% golang.org/x/

sync/errgroup

.(*Group).Go.func1

0 0.00% 100.00% 90s 1.66% go.opencensus.io/stats/

view .(*worker).start

0 0.00% 100.00% 100.99s 1.87% github.com/wetware/

...(*Socket).heartbeat

Table 6.4: Top concurrency delys on Wetware server running a webcrawling

application
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use of lightweight concurrency controls via channels over more costly mechanisms

such as mutexes. As closing remarks, figure 6.7 was generated from a goroutine

profile and shows the major causes of goroutine parking. It shows the majority of

parks were caused by select statements and read or write operations over channels,

matching the results of the block profiling. These operations were often caused

by RPCs or SPSC queue usages.

Figure 6.7: Causes of goroutine parking
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Chapter 7

Conclusions

In this thesis, we designed and developed a WebAssembly-based process execu-

tion and management tool for a P2P distributed systems middleware. We offered

background into the technologies it is built upon, as well as some insight into

how they fit together to form the executor. The background study proved vital

for both design and implementation, allowing us to build a tool that takes ad-

vantage of the fortes of each of its technological pillars: process scheduling and

concurrency are handled by Go, a language designed for concurrency. Isolation is

built into WebAssembly. Inter-process communication is performed with Cap’n

Proto, a high-performance RPC system. These components consolidate into a

process execution technology stack with which to run, manage, communicate,

and coordinate processes across a cluster.

We provided isolated WebAssembly processes the means of reaching outside

their sandbox through object capabilities, and facilitated sharing capabilities

among processes. Through benchmarking, profiling, and characterization we

identified and overcame some performance bottlenecks as well as planned fu-

ture performance-enhancing measures. We validated and tested the solution,

along with demonstrating how to integrate new features into Wetware processes

through Raft and HTTP capabilities.

We conclude that Wetware is a viable tool for building and deploying distributed,

P2P applications with performance comparable to higher-level programming lan-
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guages; all while providing, process management features, inter-process commu-

nication, and a suite of general-purpose distributed system tools. This project

aims to provide insight, the first examples, and a path to follow for anyone who

wishes to create P2P distributed applications that benefit from our WebAssembly

and object capability-based approach.

This work contributed to the Wetware project [61], developed experimental fea-

tures [62], produced a general-purpose Raft library with Cap’n Proto as a trans-

port [64], as well as creating an application integrating them: the first public

demonstration of Wetware running a distributed application [63]; All of the afore-

mentioned contributions are publicly available in git repositories and are open to

new contributions and experimentation.

7.1 Future Work

The Go Cap’n Proto library is working on implementing third party hand-off or

3PH. Once it is completed, a capability A that obtains a capability B from a

third party C will attempt to establish a direct connection with B instead of

proxying calls through C. This has substantial performance improvement poten-

tial, but will surely require some changes to how WASM host-guest asynchronous

communication is handled. On the same note, the most relevant bottleneck for

the executor when creating a process is managing the TCP port. The next short-

term goals include this host-guest communication rework, which will likely require

collaboration with Wazero and Go Cap’n Proto.

Developing the web crawler application showed that making capabilities accessible

for processes in different executors spread throughout a cluster is more complex

than it should be. Providing a new, improved approach by making the required

changes, possibly synchronizing capability storages in a cluster, is paramount. As

a side note, capability stores will also benefit from 3PH.

Lastly, there is a steep learning curve for some of the tools used in this thesis,

perhaps even for Wetware. It is important to work on accessibility and user

experience, to make using the executor as well as the middleware, simpler.
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7.2 Personal Assessment

This project has not only been a great learning experience but also a chance to

contribute to an open-source project being built with cutting-edge tools. Being

part of a multi-disciplinary project that encourages collaboration, has introduced

me to people and communities, as well as challenged me to build and study

performant software without the low-level control provided by other programming

languages more fit for HPC. All throughout the development of this thesis I’ve

encountered subjects studied during the master’s degree courses, from consensus

algorithms for distributed systems to process scheduling and IPC; making the

thesis both an overture and the finale of this journey.
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Acronyms

3PH Third Party Hand-Off

AIX Advanced Interactive eXecutive

AMD Advanced Micro Devices

API Application Programming Interface

ARM Advanced RISC Machine

BEAM Bogdan’s Erlang Abstract Machine

BE Big Endian

BSD Berkeley Software Distribution

CID Content ID

CI Continuous Integration

CLI Command-Line Interface

CORBA Common Object Request Broker Architecture

CSP Communicating Sequential Processes

Capnp Cap’n Proto

DFS Depth First Search

ETL Extract, Transform, Load

FD File Descriptor
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Acronyms

FFI Foreign Function Interface

HPC High Performance Computing

HTTP Hypertext Transfer Protocol

IO Input/Output

IPFS Inter-Planetary File System

IWT Inactive Wait Time

IaaS Infrastructure as a Service

iOS iPhone OS

IoT Internet of Things

LE Little Endian

LRQ Local Run Queue

MIPS Microprocessor without Interlocked Pipeline Stages

NAT Network Address Translation

OS Operating System

P2P Peer-to-Peer

PC Personal Computer

PID Process ID

PPC PowerPC

PaaS Platform as a Service

PoC Proof of Concept

QUIC Quick UDP Internet Connections

QoL Quality of Life

RISC Reduced Instruction Set Computing

RPC Remote Procedure Call
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Acronyms

SPSC Single-Producer/Single-Consumer

TCP Transmission Control Protocol

TLS Transport Layer Security

UDP User Diagram Protocol

UML Unified Modeling Language

URL Uniform Resource Locator

VAT Virtual Address Table

WASIP1 WASI Preview 1

WASI WebAssembly System Interface

WASM WebAssembly

WW Wetware
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Appendix A Appendices

Appendix A: UML Component Diagrams

Figure A.1: UML diagram of the main executor package (Executor)

Figure A.2: UML diagram of the main executor package (Miscellaneous)

117



Appendix A Appendices

Figure A.3: UML diagram of the main executor package (Process)

Figure A.4: UML diagram of the main executor package (Bytecode Cache)
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Figure A.5: UML diagram of the main executor package (Process Tree)

119



Bibliography

[1] Kenton Varda. “Cap’n Proto”. https://capnproto.org/. [Online; accessed

2023-10-10]. viii, 16

[2] Go. “Scheduling Structures”. https://go.dev/src/runtime/HACKING.

[Online; accessed 2023-10-10]. x, 44, 47

[3] Diego Ongaro and John Ousterhout. In search of an understandable consen-

sus algorithm. In Proceedings of the 2014 USENIX Conference on USENIX

Annual Technical Conference, USENIX ATC’14, page 305–320, USA, 2014.

USENIX Association. 1, 13

[4] Peter Alvaro, Neil Conway, Joseph M. Hellerstein, and David Maier. Blazes:

Coordination analysis for distributed programs, 2013. 1

[5] Benjamin Hindman, Andy Konwinski, Matei Zaharia, Ali Ghodsi, An-

thony D Joseph, Randy Katz, Scott Shenker, and Ion Stoica. Mesos: A plat-

form for {Fine-Grained} resource sharing in the data center. In 8th USENIX

Symposium on Networked Systems Design and Implementation (NSDI 11),

2011. 1

[6] Leslie Lamport. Time, clocks, and the ordering of events in a distributed

system. In Concurrency: the Works of Leslie Lamport, pages 179–196. 2019.

1

[7] Abdeldjalil Ledmi, Hakim Bendjenna, and Sofiane Mounine Hemam. Fault

tolerance in distributed systems: A survey. In 2018 3rd International Con-

ference on Pattern Analysis and Intelligent Systems (PAIS), pages 1–5, 2018.

1

120

https://capnproto.org/
https://go.dev/src/runtime/HACKING


Bibliography

[8] Alexey Gotsman, Hongseok Yang, Carla Ferreira, Mahsa Najafzadeh, and

Marc Shapiro. ’cause i’m strong enough: Reasoning about consistency

choices in distributed systems. In Proceedings of the 43rd Annual ACM

SIGPLAN-SIGACT Symposium on Principles of Programming Languages,

pages 371–384, 2016. 1

[9] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: a flexible data processing

tool. Communications of the ACM, 53(1):72–77, 2010. 1

[10] Wal Van Lierop. “Step Up Or Break Up: The Chal-

lenge For Big Tech”. https://www.linkedin.com/pulse/

step-up-break-challenge-big-tech-wal-van-lierop/?articleId=

6722195716942503936. [Online; accessed 2023-10-10]. 1
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