
Design and implementation of a WASM-based process
execution service for a distributed-systems middleware

Mikel Solabarrieta Román

Universitat Politècnica de Catalunya

18/10/2023

Supervisor: Jordi Guitart Fernández

Master Degree in Innovation and Research in Informatics
(High Performance Computing)

Mikel Solabarrieta Román Universitat Politècnica de Catalunya — MIRI - HPC 18/10/2023 1 / 40



Outline

1 Introduction and background

2 Development

3 Validation and performance analysis

4 Conclusions

5 Q&A

Mikel Solabarrieta Román Universitat Politècnica de Catalunya — MIRI - HPC 18/10/2023 2 / 40



Introduction

Design and development of a process executor capable of running and
managing programs written in WebAssembly and expose its
functionality through object capabilities, as part of a wider distributed
systems middleware.

Validation through a real, distributed application.

Performance analysis of the developed components.

Mikel Solabarrieta Román Universitat Politècnica de Catalunya — MIRI - HPC 18/10/2023 3 / 40



Distributed systems, IaaS, and PaaS

Infrastructure is rented as a service, often with additional features.
Synergizes with distributed systems for its convenience, pricing and ease of
horizontal growth; at the cost of vendor lock-in and control relinquishment.

Distributed systems provide:

Horizontal scalability, availability, concurrency, fault-tolerance,
load-balancing, flexibility, data-locality.

At the cost of:

Complexity, consistency, networking, consensus, failure management,
communication bottlenecks1.

Common examples:

Content delivery networks, distributed databases, file-sharing
networks, VPNs, distributed indexers, web crawlers...

1Alexey Gotsman et al. “’Cause I’m strong enough: Reasoning about consistency choices in
distributed systems”. In: Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages. 2016, pp. 371–384.
Mikel Solabarrieta Román Universitat Politècnica de Catalunya — MIRI - HPC 18/10/2023 4 / 40



Wetware
Definition

Wetware

Modular middleware to build and run peer-to-peer distributed applications
through object capabilities.

Provides:

Peer discovery

Clustering

Blob storage

Inter-process communication

Message propagation

Process execution

Process management

...

Mikel Solabarrieta Román Universitat Politècnica de Catalunya — MIRI - HPC 18/10/2023 5 / 40



Wetware
Usage

Figure: How Wetware is used to run a process

Mikel Solabarrieta Román Universitat Politècnica de Catalunya — MIRI - HPC 18/10/2023 6 / 40



Cap’n Proto
Object capability and RPC framework

Open source RPC framework and serialization format with user experience
similar to OOP.

Created as successor to Protocol Buffers

CPU-bound

Incremental and random reads over serialized data

Language agnostic

Time-travel promise pipelining

Security model: objects can only be interacted with through messages sent
to their references (object capabilities).

Mikel Solabarrieta Román Universitat Politècnica de Catalunya — MIRI - HPC 18/10/2023 7 / 40



WebAssembly
▷ Fast, portable, low-level code2.

▷ Intermediate code format.

▷ Processes run in isolation.

▷ No real parallelism in a process.

▷ WASI: layer over the runtime to enable
socket, file system... access.

▷ Wazero:

Portable

Single, statically linked binary

Community

Collaboration Figure: WASM component
hierarchy

2Andreas Haas et al. “Bringing the Web up to Speed with WebAssembly”. In: SIGPLAN
Not. (2017). issn: 0362-1340. doi: 10.1145/3140587.3062363.
Mikel Solabarrieta Román Universitat Politècnica de Catalunya — MIRI - HPC 18/10/2023 8 / 40

https://doi.org/10.1145/3140587.3062363


Go

Compiled, garbage-collected language.

Strong focus on concurrency and parallelism.

Concurrency through Goroutines: lightweight threads.

Native concurrency tools:

Channels

Select statements

Mutexes, thread-safe structures

Contexts

Collaborative and preemptive scheduling.

Support for many architectures and operating systems, as well as
WebAssembly as a compilation target.

Mikel Solabarrieta Román Universitat Politècnica de Catalunya — MIRI - HPC 18/10/2023 9 / 40



Go
Gs, Ms and Ps

Definitions:

P: Logical cores and network poller

M: OS thread

G : Goroutine

The scheduler’s job is to match a G , a M and a P.

Figure: G s, Ms, and Ps

Mikel Solabarrieta Román Universitat Politècnica de Catalunya — MIRI - HPC 18/10/2023 10 / 40



Go
Concurrency control

Blocks
Interface G M P Cost
mutex Y Y Y $$$
note Y Y Y/N* $$
park Y N N $

Table: Block-levels of native yielding interfaces3

∗ depends on the specific system call

3Go. “Scheduling Structures”. https://go.dev/src/runtime/HACKING.
Mikel Solabarrieta Román Universitat Politècnica de Catalunya — MIRI - HPC 18/10/2023 11 / 40

https://go.dev/src/runtime/HACKING


Development

Development is split into:

1 Core executor

2 Host↔Guest communication

3 Process management

4 Integration into Wetware

5 Validation

Mikel Solabarrieta Román Universitat Politècnica de Catalunya — MIRI - HPC 18/10/2023 12 / 40



Core executor

▷ Based on a Wazero runtime.
▷ Binds a Process capability to a guest WASM function call.
▷ Exposed through object capabilities.

Figure: Executor component overview.

Mikel Solabarrieta Román Universitat Politècnica de Catalunya — MIRI - HPC 18/10/2023 13 / 40



Process execution
Sequence diagram

Mikel Solabarrieta Román Universitat Politècnica de Catalunya — MIRI - HPC 18/10/2023 14 / 40



Host-guest asynchronous communication
Host functions

Mikel Solabarrieta Román Universitat Politècnica de Catalunya — MIRI - HPC 18/10/2023 15 / 40



Host-guest asynchronous communication
Pre-opened sockets

Feature officially added to WASI and adopted by Go 1.2145, as well as
Wazero6.

Figure: Asynchronous host-guest communication through pre-opened TCP
sockets.

4Go. “runtime: implement wasip1 netpoll”.
https://go-review.googlesource.com/c/go/+/493357.

5Go. “net: implement wasip1 FileListener and FileConn”.
https://go-review.googlesource.com/c/go/+/493358.

6Wazero. “WASI: fix nonblocking sockets on *NIX”.
https://github.com/tetratelabs/wazero/pull/1503.
Mikel Solabarrieta Román Universitat Politècnica de Catalunya — MIRI - HPC 18/10/2023 16 / 40

https://go-review.googlesource.com/c/go/+/493357
https://go-review.googlesource.com/c/go/+/493358
https://github.com/tetratelabs/wazero/pull/1503


Host-guest asynchronous communication
Host flow diagram

Figure: Flow diagram of execution method.

Mikel Solabarrieta Román Universitat Politècnica de Catalunya — MIRI - HPC 18/10/2023 17 / 40



Host-guest asynchronous communication
Guest flow diagram

Figure: Guest bootstrapping flow diagram.

Mikel Solabarrieta Román Universitat Politècnica de Catalunya — MIRI - HPC 18/10/2023 18 / 40



Process management
Process hierarchy

Complemented by a PID → Process map.

(a) Natural tree (b) Binary representation

Figure: Representations of the process tree

Mikel Solabarrieta Román Universitat Politècnica de Catalunya — MIRI - HPC 18/10/2023 19 / 40



Process management
The Process capability

Processes are interacted with through their object capabilities.
Process capabilities have methods to:

Wait for completion

Pause/Resume

Monitor

Link/Unlink

ID

Kill

Process listing

Mikel Solabarrieta Román Universitat Politècnica de Catalunya — MIRI - HPC 18/10/2023 20 / 40



Pause and resume processes

Pause and resume send events to Wetware processes, but require user
implementation of event management.

Calls to Process.Pause and Process.Resume will cause an event on the
guest OnPause and OnResume channels.

1 func main() {

2 ...

3 urls = make(chan string)

4 for {

5 select {

6 case <-eventHandler.OnPause ():

7 <-eventHandler.OnResume ()

8 case <-crawl(ctx , urls , <-urls):

9 }

10 }

11 }

Listing: Event loop management in a Wetware process

Mikel Solabarrieta Román Universitat Politècnica de Catalunya — MIRI - HPC 18/10/2023 21 / 40



Process linking and unlinking

Link

Bidirectional relation between two processes A ↔ B in which if either A or
B end, the other will end as well.a

aErlang. “link”. https://www.erlang.org/doc/man/erlang#link-1.

Four methods: Link, LinkLocal, Unlink, UnlinkLocal.

Idempotence: there can only be one or zero links between two processes at
any given time. Unlink operations have no effect between processes with
no link.

Propagation: If A ↔ B and B ↔ C , terminating A will indirectly cause
C ’s termination. Every initial call A → B to Link or Unlink will cause a
roundtrip call B → A.

Mikel Solabarrieta Román Universitat Politècnica de Catalunya — MIRI - HPC 18/10/2023 22 / 40

https://www.erlang.org/doc/man/erlang#link-1


Process monitoring

If a process A monitors a process B, A will be notified when B ends.

Calls to monitor are blocked, and only released when the monitored
process ends or connection is lost.

Same as Wait, but returns a reason instead of an exit code.

Mikel Solabarrieta Román Universitat Politècnica de Catalunya — MIRI - HPC 18/10/2023 23 / 40



Process ending

Figure: End of a process

Mikel Solabarrieta Román Universitat Politècnica de Catalunya — MIRI - HPC 18/10/2023 24 / 40



Process listing

Unitary Executor.Ps() method, which provides the executor, PID, PPID,
CID, creation date and arguments of every process running in the executor.

Aggregated by CLI tool ww ps to show every process in the cluster.

1 mikel@laptop$ ww ps

2 Executor PID PPID Creation CID Args

3 38908... 2 1 Wed Oct 11... z26... [iPH ...]

4 38908... 3 2 Wed Oct 11... z26... [iPH ...]

5 92149... 2 1 Wed Oct 11... z26... [j92 ...]

6 92149... 3 1 Wed Oct 11... z26... [j92 ...]

7 7158b... 2 1 Wed Oct 11... z26 ... [mLw ...]

8 7158b... 3 1 Wed Oct 11... z26 ... [mLw ...]

9 mikel@laptop$

Listing: Output of “ww ps”

Mikel Solabarrieta Román Universitat Politècnica de Catalunya — MIRI - HPC 18/10/2023 25 / 40



Integration into Wetware

Each Wetware node has an executor, exposed through a capability and
initialized along with the node.

Introduction of the ww cluster run command.

Guest bootstrapping and QoL features in the guest/system package.

Considerations:

The Wazero runtime is configured with WithCloseOnContextDone(true), for
propagating stops to processes.

Any select statements that might prevent a correct shutdown must
contemplate the case of the context ending.

Every spawned goroutine is tied to a context bound to the “original”
context.

Mikel Solabarrieta Román Universitat Politècnica de Catalunya — MIRI - HPC 18/10/2023 26 / 40



Validation prerequisites

Developing a web crawler application as validation showed us the need for:

A Capability Storage, accessible through the executor capability.

Implementation of any additional functionalities outside WASM, in
this case HTTP requests.

Utilization of the Capability Storage to provide the functionalities to
the application.

Mikel Solabarrieta Román Universitat Politècnica de Catalunya — MIRI - HPC 18/10/2023 27 / 40



Basic validation
Through a real application

The initial version of the web crawler has centralized coordination and
distributed work.

Figure: Distributed web crawler with centralized coordination

It allowed us to validate:

Creation and deployment of a distributed application in a Wetware
node and cluster.

Creation of sub-processes from a Wetware process.

Inter-process communication through Wetware channels.

Overcoming of WASM limitations through external object capabilities.

Mikel Solabarrieta Román Universitat Politècnica de Catalunya — MIRI - HPC 18/10/2023 28 / 40



Raft
A comprehensible consensus algorithm7

▷ Standalone Raft-over-Cap’n Proto library based on Etcd’s Raft
implementation.

▷ Cap’n Proto as a transport.

▷ Nodes communicate through each other’s capabilities.

▷ Some method implementation up to the user: required for Wetware
compatibility.

▷ Missing snapshot features.

7Diego Ongaro and John Ousterhout. “In Search of an Understandable Consensus
Algorithm”. In: Proceedings of the 2014 USENIX Conference on USENIX Annual Technical
Conference. USENIX ATC’14. Philadelphia, PA: USENIX Association, 2014, pp. 305–320. isbn:
9781931971102.
Mikel Solabarrieta Román Universitat Politècnica de Catalunya — MIRI - HPC 18/10/2023 29 / 40



Feature-rich validation
Design

Figure: Fully distributed web crawler

Mikel Solabarrieta Román Universitat Politècnica de Catalunya — MIRI - HPC 18/10/2023 30 / 40



Feature-rich validation
By creating a complex application

It demonstrated:

Creation and deployment of a fully distributed application across
nodes in a Wetware cluster.

Nodes in a Wetware cluster can run in different architectures.

Consensus algorithm utilization in Wetware applications.

Fault tolerance through claim sets.

Management of local and global queues.

Transparent IPC without the need of channels.

Stability of the executor in a 30 minute application run.

Successful integration of the executor as part of the Wetware
middleware.

Mikel Solabarrieta Román Universitat Politècnica de Catalunya — MIRI - HPC 18/10/2023 31 / 40



Performance analysis
Highly parallelizable workload - Busy

Figure: Multi-process busy program flow diagram

Mikel Solabarrieta Román Universitat Politècnica de Catalunya — MIRI - HPC 18/10/2023 32 / 40



Performance characterization
Speedup

Figure: Busy workload strong scalability

Mikel Solabarrieta Román Universitat Politècnica de Catalunya — MIRI - HPC 18/10/2023 33 / 40



Performance characterization
Total runtime

Figure: Total runtime of the busy workload

Mikel Solabarrieta Román Universitat Politècnica de Catalunya — MIRI - HPC 18/10/2023 34 / 40



Benchmark against native programming languages
Corrected results

Figure: Runtime comparison for equivalent programs

Mikel Solabarrieta Román Universitat Politècnica de Catalunya — MIRI - HPC 18/10/2023 35 / 40



Concurrency characterization
Utilization of concurrency control mechanisms

Flat Flat% Sum% Cum Cum% Name Cost
11645 82.55% 82.55% 11645 82.55% runtime.selectgo $
1656 11.74% 94.29% 11645 11.74% runtime.chanrecv1 $
515 3.65% 97.29% 515 3.65% sync.(*Mutex).Lock $$$
279 1.98% 99.92% 279 1.98% runtime.chanrecv2 $
0 0.00% 99.92% 131 0.93% net.(*Buffers).WriteTo ?

0 0.00% 99.92% 402 2.85% io.ReadFull ?

0 0.00% 99.92% 402 2.85% io.ReadAtLast ?

0 0.00% 99.92% 5287 38.19% golang.org/x/sync/
errgroup
.(*Group).Go.func1

$

Table: Top concurrency contentions on Wetware server running a webcrawling
application, excluding system calls

Mikel Solabarrieta Román Universitat Politècnica de Catalunya — MIRI - HPC 18/10/2023 36 / 40



Conclusions

We designed and developed WebAssembly and Cap’n Proto-based
process execution and management tools for the Wetware distributed
systems middleware.

Studied and used the background to make design and development
decisions.

Provided isolated WebAssembly modules access outside their sandbox
only though object capabilities.

Created and deployed a real distributed application.

Concluded that Wetware is a viable tool for building and deploying
distributed P2P applications with comparable performance to
higher-level languages.

Mikel Solabarrieta Román Universitat Politècnica de Catalunya — MIRI - HPC 18/10/2023 37 / 40



Future work

Re-approach asynchronous communication between WASM host and
guest through host functions.

Consider adoption of Cap’n Proto third-party hand-off.

Further performance improvements.

Quality of life and user experience improvements.

Mikel Solabarrieta Román Universitat Politècnica de Catalunya — MIRI - HPC 18/10/2023 38 / 40



Contributions to open source projects

github.com/wetware/pkg

github.com/mikelsr/pkg

github.com/mikelsr/ww-webcrawler

github.com/mikelsr/raft-capnp

github.com/mikelsr/ww-raft-example

Mikel Solabarrieta Román Universitat Politècnica de Catalunya — MIRI - HPC 18/10/2023 39 / 40

https://github.com/wetware/pkg
https://github.com/mikelsr/pkg
https://github.com/mikelsr/ww-webcrawler
https://github.com/mikelsr/raft-capnp
https://github.com/mikelsr/ww-raft-example


End of the presentation
Qustions and answers

Thank you for attending!
Time for Q&A.

Mikel Solabarrieta Román Universitat Politècnica de Catalunya — MIRI - HPC 18/10/2023 40 / 40


