
Deusto
Facultad de Ingeniería 
Universidad de Deusto

Ingeniaritza Fakultatea 
Deustuko Unibertsitatea

Grado en Ingeniería en Electrónica  
Industrial y Automática
Industria Elektronikako eta  
Automatikako Ingeniaritzako Gradua

Proyecto fin de grado
Gradu amaierako proiektua
Application Acceleration Using a
Heterogeneous MPSoC Architecture with
MPU and FPGA Processors

Mikel Solabarrieta Román

Director: Ignacio Angulo Martínez

Bilbao, junio de 2020



 



Deusto
Facultad de Ingeniería 
Universidad de Deusto

Ingeniaritza Fakultatea 
Deustuko Unibertsitatea

Grado en Ingeniería en Electrónica  
Industrial y Automática
Industria Elektronikako eta  
Automatikako Ingeniaritzako Gradua

Proyecto fin de grado
Gradu amaierako proiektua
Application Acceleration Using a
Heterogeneous MPSoC Architecture with
MPU and FPGA Processors

Mikel Solabarrieta Román

Director: Ignacio Angulo Martínez

Bilbao, junio de 2020





Abstract

This degree thesis tests the performance improvements of an MPU+FPGA multiprocessor system-
on-chip (MPSoC) over standard microcontrollers in edge computing applications, namely object
detection and facial recognition. Conclusions are deducted from execution profiles of similar facial
recognition applications with and without FPGA acceleration.

The board used for this thesis is a Xilinx Zynq UltraScale+ MPSoC development board: the
Ultra96-v1.

A brief description of Zynq is due before describing the application it will be used for. Zynq is
a computer architecture designed by Xilinx that contains both an ARM processor and a Field-
Programmable Gate Array. PYNQ is a Zynq framework that has been used to develop software for
this thesis mainly because it allows the usage of the Python programming language to make use
of Zynq. It runs on the Linux operating system and has Jupyter Notebooks installed by default.
Programmable Logic is implemented with overlays: hardware libraries that enable a simple way of
interacting with the FPGA.

Facial recognition and object detection are both relatively computationally heavy tasks that tasks
a lot of time to perform on standard microcontrollers. The viability of performing the aforemen-
tioned tasks in real time will be tested by using existing overlays to accelerate Artificial Intelligence
algorithms and computer vision utilities, both independently and integrating them.

Descriptors
Edge Computing, Embedded Devices, MPSoC, PYNQ, Zynq

iii





Contents

1 Introduction 1

1.1 Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Project Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.3 Problem and Need . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.4 Justification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Scope 5

2.1 Ethical Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.3 Project Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3 Technical Requirements 9

3.1 Functional Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.2 Non-Functional Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

4 Methodology and Resources 15

4.1 Kanban . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4.2 Resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

5 Budget and Planning 19

5.1 Budget . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

5.2 Planning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

v



6 State of the Art 23

6.1 Key Areas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

6.1.1 Edge Computing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

6.1.2 System-on-Chip . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

6.2 Platform Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

6.2.1 Zynq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

6.2.2 PYNQ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

6.3 Board Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

6.4 High-Level Synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

6.5 Preceding Projects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

6.5.1 FINN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

6.5.2 Binarized Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

6.5.3 Quantized Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

7 Development 41

7.1 Familiarization with the PYNQ Platform . . . . . . . . . . . . . . . . . . . . . . . 41

7.2 Facial Recognition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

7.2.1 LFC Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

7.2.2 LFC Usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

7.2.3 CNV Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

7.2.4 CNV Usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

7.3 Object Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

7.3.1 Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

7.3.2 Usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

7.4 Integration of Facial Recognition and Object Detection . . . . . . . . . . . . . . . . 55

7.5 Forked Projects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

8 Results 61

vi



9 Conclusions 65

9.1 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

9.2 Personal Assessment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

Bibliography 71

A Vivado Block Designs

B Integration Utilization Report

C HLS Example

vii





List of Figures

1.1 Profile of object detection program . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2.1 Characteristics of the BSD-3 license used for PYNQ . . . . . . . . . . . . . . . . . 6

2.2 Project structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

4.1 Kanban board . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4.2 Picture of the PYNQ-Z1 (left) and Ultra96 (right) boards . . . . . . . . . . . . . . 17

5.1 Project schedule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

6.1 Zynq-7000 architectural overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

6.2 Zynq-UltraScale+ component overview . . . . . . . . . . . . . . . . . . . . . . . . . 26

6.3 PL interface to PS memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

6.4 PYNQ application overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

6.5 State of the program with image in local and shared memory . . . . . . . . . . . . 30

6.6 State of the program when using the PL . . . . . . . . . . . . . . . . . . . . . . . . 31

6.7 Jupyter Notebook example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

6.8 Picture of the Ultra96-v1 board . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

6.9 PS specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

6.10 PL specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

6.11 Ultra96 block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

6.12 HLS validation and verification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

6.13 FINN data flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

ix



6.14 LFC diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

6.15 CNV diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

6.16 TinierYOLO topology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

7.1 Dataset directory structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

7.2 Best epoch when training LFCW1A2 . . . . . . . . . . . . . . . . . . . . . . . . . . 46

7.3 GTSRB modified dataset directory structure . . . . . . . . . . . . . . . . . . . . . 48

7.4 Best epoch when training CNVW1A1 . . . . . . . . . . . . . . . . . . . . . . . . . 49

7.5 Last step before creating the Vivado project . . . . . . . . . . . . . . . . . . . . . . 56

8.1 Execution times of each BNN topology . . . . . . . . . . . . . . . . . . . . . . . . . 62

8.2 Alternative view of the execution times of each BNN topology . . . . . . . . . . . . 62

8.3 Comparison of HW+SW and SW QNN execution times . . . . . . . . . . . . . . . 63

8.4 Comparison of border (SW) and middle (HW) layers . . . . . . . . . . . . . . . . . 63

8.5 GitLab repository containing the Jupyter Notebooks . . . . . . . . . . . . . . . . . 64

x



List of Tables

3.1 Requirements of objective O1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.2 Requirements of objective O2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.3 Requirements of objective O3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.4 Requirements of objective O4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.5 Requirements of objective O5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.6 Requirements of objective O6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.7 Requirements of objective O7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.8 Requirements of objective O8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.9 Requirements of objective O9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

5.1 Cost of human resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

5.2 Cost of material resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

xi





Listings

6.1 ”IP extraction from the resizer overlay” . . . . . . . . . . . . . . . . . . . . . . . . 29
6.2 ”Memory allocation” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
6.3 ”PL usage” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
7.1 ”Image modification script” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
7.2 ”Sample of mnist.py” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
7.3 ”Module versions” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
7.4 ”BNN LFC usage example” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
7.5 ”PynqBNN constructor” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
7.6 ”Training of CNV” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
7.7 ”BNN usage example” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
7.8 ”Ctypes example from darknet.py” . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
7.9 ”Python dynamic library import in darknet.py” . . . . . . . . . . . . . . . . . . . . 51
7.10 ”Function definition example from darknet.py” . . . . . . . . . . . . . . . . . . . . 51
7.11 ”QNN global variables” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
7.12 ”QNN imports” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
7.13 ”Partial method of TinierYolo class” . . . . . . . . . . . . . . . . . . . . . . . . . . 52
7.14 ”Network architecture” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
7.15 Network creation and configuration” . . . . . . . . . . . . . . . . . . . . . . . . . . 53
7.16 ”First QNN layer” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
7.17 ”Middle QNN layers” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
7.18 ”Middle QNN layers post-processing” . . . . . . . . . . . . . . . . . . . . . . . . . . 54
7.19 ”Extraction of results from QNN” . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
8.1 ”BNN and QNN fork installation command” . . . . . . . . . . . . . . . . . . . . . 63

xiii



 



PROYECTO FIN DE GRADO

Chapter 1

Introduction

This thesis aims to provide relevant information about the end of degree project. This chapter
intends to provide an introduction to the project, provide context for it, the motivation behind it
and lay out the problem it intends to solve.

1.1 Context

The rise of Internet of Things (IoT) systems for any range of applications, from industrial to
consumer ones, brings with it the benefit of bringing “intelligence” to applications that didn’t
traditionally have it. IoT, in this context, is described as the convergence of technologies from the
fields of data-capture devices, embedded systems and analytics, amongst others.

Inside IoT systems, edge computing consists on running some of the data-processing functions in
the data-capture devices themselves rather than in centralized servers. Dual architectures such
as the one provided by Xilinx enable edge devices, devices that do the processing, to be more
flexible and more efficient regarding both computation and energy consumption than a standard,
single-processor device. The advantages of this specific paradigm were a device with ARM+FPGA
processors are used for edge computing include speed improvements, reduced bandwidth use and
energy consumption, some security improvements and increased reliability. While there are some
downsides, such as the increased programming difficulty, in most cases they are outweighed by the
benefits.

1.2 Project Motivation

The adoption of an interesting, relatively new architecture with potential implications in fields
such as Distributed Systems, Edge Computing and High Performance Computing. As discussed in
the “Justification” section, the fact that the platform studied in this project seems to be the path
many researchers and professionals will take is a great motivator. The interest in a research career

1



1.Introduction

Fig. 1.1: Profile of object detection program

and both personal and professional interests in fields very related to this project, such as High
Performance Computing (HPC) are also important factors. This will be the last project before
pursuing a career in the HPC field, thus exploring what the personally completely new concept
that is a heterogeneous, dual architecture that combines many of the interests adjured during the
studies is appropriate.

One of the firsts steps of the project was to run an object detection application in a computer
with an ARM processor and profile the execution. Figure 1.1 shows a simplified version of the
profile. The program run the facial recognition function in 43 different images and, as seen in
the image, a highly parallelizable section of the code: the inference, was taking more than half
of the execution times. The code section shown in the picture as “other” included displaying the
images, which if handled correctly with concurrency could completely disappear from the profile.
It is clear then the potential of a device such as the one studied in this project: the performance
can be very significantly improved without the developer of the application needing to know the
inner workings of any low-lever level device. Just take the input, pass it to the PL, and receive
the output. This is significantly important in industrial environments where reducing the latency
of error detection in any process can prevent downtime and lead to considerable savings.

1.3 Problem and Need

The way IoT technologies are currently implemented has a lot of room for improvement, such
as the centralization of processing units and the need to send great amounts of data from the
acquisition systems to the processing units potentially saturating the networking infrastructure.
While solutions to some of the presented problems exist, most noticeable the development and
deployment of 5G networking infrastructure, the Zynq architecture could prove to be an impactful

2



PROYECTO FIN DE GRADO

and further improve the situation when combined with other solutions.

Reiterating, the problem is that most edge devices have low computing power and can’t run
advanced processes on the data, requiring to be sent to central servers. Thus the need is an edge
computing device that allows for such processing while being energy efficient and low cost. This
project specifically looks at an edge computing device able of performing object detection and
facial recognition without requiring the transmission of video feed to central servers or introducing
latency and bandwidth issues to the network. Both of these applications are computationally heavy
and can’t be adequately performed in real-time by standard microcontrollers that have acceptable
energy consumption. The dual ARM+FPGA enables the delegation of computationally heavy
tasks that can be parallelized to the FPGA processing unit while implementing the rest of the
functionality in the ARM processors. This project evaluates how the Zynq architecture and the
PYNQ framework work as a solution to this problem.

1.4 Justification

The idea that specialized hardware is becoming increasingly relevant in multiple fields, albeit not a
definitive solution to problems that require more flexibility, is a justifying argument in itself. The
counter-argument: that some problems require a more flexible solution, can also be turned around
in this specific case. The processor-centric approach means that designs downloaded to the FPGA
can be changed on runtime, which brings flexibility single processor devices lack.

Despite being the final project of the Industrial Electronics and Automation Engineering degree,
it involves concepts studied in both degrees of the double degree. The main approach is based on
using an ARM processor, which combined with an FPGA in a single MPSoC device gives very
significant performance improvements. The platform is intended for industrial uses and could
have been applied in many of the degree subjects: signal processing, automatizing... Because it
contains many different subjects studied throughout the degree, it seems appropriate as a final
project for the electronics degree. At the same time, development is made more accessible by
using a framework based on GNU/Linux and Python, both of which have been very relevant
subjects in the Computer Engineering degree. The knowledge acquired about the GNU/Linux
operating systems has proven useful not only for understanding the platform better but also for
troubleshooting in several steps of the project development process. Knowledge of Python has
also proven very useful in several sections were documentation was lacking and the provided code
needed to be thoroughly inspected. It has also been useful to speed up development and modify
things such as code of broken dependencies. At a certain point in the project, the C development
done in the microcontrollers and automatizing subjects electronics degree also proved useful when
modifying a library that while called from Python, was written in C. This will be discussed further
in one of the final sections, section 9.2.

3





PROYECTO FIN DE GRADO

Chapter 2

Scope

The main goal of this project is to research and experiment with the state of the art technology that
represents the PYNQ framework and its underlying technology, and its actual and potential impact
on relevant applications. These applications are in this case object detection and facial recognition
because, as explained in the introduction chapter, they are recurrent processes in countless scenarios
and computationally demanding for most standard microcontrollers. They represent an example
of how the range of data-processing functions that can be executed by devices near to where the
data is captured instead of in central servers is not limited to basic operations and can have some
level of complexity. Experimenting with these examples is, once again, the goal of this project and
both the scope and the results are oriented to representing so.

Some concepts, such as “overlays” are mentioned in this chapter and in chapter 3 are not explained
until chapter 6 but should be clear after reading it.

The expected final result of the project includes:

• Analysis of the Zynq architecture

• Analysis of existing PYNQ projects and their potential use in object detection and face
recognition

• Adaptation of the existing PYNQ project to fit the use cases of object detection and face
recognition

• Benchmarks of multiple hardware-accelerated applications and their not accelerated versions

• A program integrating various PYNQ overlays to meet the requirements of real-time object
detection and face recognition in an edge computing device

5



2.Scope

2.1 Ethical Considerations

The first ethical aspect examined is software licensing. Software licenses determine what people
can do with software, how they can use, modify and distribute it; and are often overlooked. Many
of the components of this project have open licenses, namely the BSD-3 or “BSD new” license, its
most relevant characteristic being the ability to modify and redistribute the source code as long
as the original license is included. It is compatible with the widely used GNU General Public
License and has some more specific details, such as forbidding the use of the names of the original
authors for endorsements. The main characteristics of the license are listed in figure 2.1. Having a
permissive software license is important because it gives more rights and opportunities to anyone
interested in using the software, favoring accessibility and equality.

Fig. 2.1: Characteristics of the BSD-3 license used for PYNQ

Other ethical aspects of special relevance to this project are the potential uses of facial recognition
and object detection. Facial recognition is a technology with many potential benefits, but also
many risks. Due to this, many of the companies and institutions developing the technology are
doing it with caution. While acknowledging the clear benefits it may offer (convenience, security...),
this section will focus on analyzing the ethical issues it presents. The most commonly discussed
risks are the privacy issues systems using facial recognition may imply, or the potential exploitation
of the ability to instantly identify people. Assessing privacy issues, facial recognition is often used
without the consent of the people being analyzed; and in some cases can be used to access a lot
of public information about a person with just their face, even if that person did not agree to
it. About exploitation, the ability to identify people instantly can be used for unethical purposes,
for example by a government or company running a face recognition algorithm against a group of
protesting people to identify and retaliate against them. When applied to critical applications such
as automated criminal identification, false positives may result in innocent people being condemned
which goes against the principle of justice.

It is important that the ethical issues of these applications are analyzed and regulated. Questions
must be asked about why certain technologies are being developed and what potential risks they
may have and how those affect people or the environment, before developing them.

2.2 Objectives

The main objective of the project is to evaluate how suitable the Zynq devices with the PYNQ
framework are as a solution to the necessities edge computing presents in modern IoT systems.

6



PROYECTO FIN DE GRADO

Two computationally heavy tasks will be studied: object detection and facial recognition. As
mentioned previously, these two tasks are too demanding for standard, mainstream homogeneous
(mono-core or multi-core) embedded microcontrollers.

Functional objectives:

• O1 An independent application must be able to identify a person’s face given a frame.

• O2 An independent application must be able to detect objects given a frame.

• O3 An integrated application must be able to perform both previous tasks.

Non-functional objectives:

• O4 Tasks must be able to be performed in real time, each one of them processing at least 5
frames per second.

• O5 Code must be deployable in PYNQ-enabled Ultra96-v1 device.

• O6 Accelerated processes must be noticeably faster than their pure software versions.

• O7 The code must be clear and understandable.

• O8 Documentation must be provided for the resulting code and underlying ideas.

• O9 Software licenses must be compatible.

2.3 Project Structure

The structure of the project is shown in figure 2.2, and contains the following steps. Summarizing,
it consists on researching state-of-the art technology and areas and trying them in different use
cases, before trying to combine them into the intended final use.

7



2.Scope

Fig. 2.2: Project structure

1. Research Zynq and PYNQ. Research Zynq architecture and the PYNQ framework. Un-
derstand their purpose and how they work.

2. Familiarize with the Ultra96-v1 board and PYNQ framework. The Ultra96-v1 is
the physical device that runs PYNQ in this project.

3. Research FINN and other relevant projects. Research projects built over PYNQ that
will be used in the next steps.

4. Create a facial recognition application from existing projects. Adapt an existing
project to serve the facial recognition functionality.

5. Test the facial recognition application. Test the efficiency of the facial recognition
solution.

6. Create an object detection application from existing projects. Adapt an existing
project to serve the object detection functionality.

7. Test the object detection application. Test the efficiency of the object detection solution.

8. Integrate object detection and facial recognition. Integrate the previous solutions into
a single project that meets all the requirements of the project.

9. Draw conclusions. Analyze the project and extract conclusions.

10. Revise documentation. Finish the project documentation.

The project structure will be further analyzed when detailing the objectives in chapter 3 and in
the planning of chapter 5, which details how much time and resources will be dedicated to each
one of the tasks.

8



PROYECTO FIN DE GRADO

Chapter 3

Technical Requirements

This chapter defines and explains each of the requirements of the project based on objectives
from section 2.2. Each objective has certain requirements. Each requirement is fully identified
by appending the requirement identifier to the objective identifier. Thus, the full identifier for
requirement R1 of objective O1 is O1R1. Requirements that require additional specifications have
a specification section. Specifications are fully identified by appending the objective, requirement
and specification identifiers.

3.1 Functional Objectives

Objective 1

The first objective, O1 refers to the facial recognition functionality and states that an application
must be created to receive a frame as input and output what person the face belongs to.

Table 3.1: Requirements of objective O1

Requirement
R1 Functional PYNQ overlay that runs a picture through an AI classifier and outputs
the class the picture belongs to.
Specification Description
S1 The overlay must fit in the Ultra96-v1 board.
Requirement
R2 Functional Python program that provides a provides an image as input to the overlay
and displays the output in a readable manner.

9



3.Technical Requirements

Objective 2

The second objective, O2 details that an object detection algorithm must be accelerated with the
Zynq architecture. All sections of code that are likely to offer a substantial improvement when
accelerated by hardware must be implemented using programmable logic (PL) and those that
cannot be accelerated must be efficiently implemented in Python.

Table 3.2: Requirements of objective O2

Requirement
R1 Functional PYNQ overlay that runs a picture through an AI classifier and outputs
a bounding box of each object detected in the picture.
Specification Description
S1 The overlay must fit in the Ultra96-v1 board.
Requirement
R2 Functional Python program that provides a provides an image as input to the overlay
and filters the bounding boxes outputted by the overlay that belong to people.
Specification Description
S1 The Python program must for compensate any functionalities the overlay

lacks.

Objective 3

Objective 3 or O3 refers to a program that combines the functionality of object detection and
facial recognition, effectively detecting and recognizing people in an image. The ideal solution
is an overlay with functions that do both as specified in requirement O3R1, however that is
a complicated task that may fail. With that in mind, an alternative program design must be
provided as stated in requirement 03R2.

Table 3.3: Requirements of objective O3

Requirement
R2 Functional PYNQ overlay that combines O1R1 and O2R1
Specification Description
S1 The overlay must fit in the Ultra96-v1 board.
S2 The functions corresponding to each functionality must be provided sep-

arately.
Requirement
R3 If O3R1 cannot be met an alternative program must be provided that effectively
utilizes O1R1 and O2R1 to achieve the same functionality.
Specification Description
S1 The program must minimize the performance impact of not achieving

O3R1.
Requirement

10



PROYECTO FIN DE GRADO

R3 Python program that wraps O3R1, feeds the overlays their corresponding inputs
and manages the outputs. If O3R1 is not met, the O3R3 must wrap O3R2.

3.2 Non-Functional Objectives

Objective 4

Objective O4 defines what is considered “real-time” in this project and does so as a minimum of
3 frames per second for application.

Table 3.4: Requirements of objective O4

Requirement
R1 The image processing part of each application must be able to process 3 frames per
second.
Specification Description
S1 Image processing is measured, but not image capture or posterior man-

agement.
S2 FPS can be extrapolated from single measures or averaged from multiple

processing of consecutive frames to counter potential bottlenecks.

Objective 5

Objective O5 defines that the developed programs must be deployable in any PYNQ-enabled
Ultra96-v1 board.

Table 3.5: Requirements of objective O5

Requirement
R1 Following the steps in chapter 7 any of the applications must be deployable in an
Ultra96-v1 board with the PYNQ firmware.
Specification Description
S1 The firmware version used in development is specified.
S2 The code is publicly available.
S3 Either the training materials or trained models are provided.
S4 Installation scripts for some steps are provided for convenience.

Objective 6

Objective O6 states that each accelerated component must have a non-accelerated counterpart to
compare it to, and the HW version must perform better than the HW version.

11



3.Technical Requirements

Table 3.6: Requirements of objective O6

Requirement
R1 A pure software implementation must be provided for each hardware-accelerated
part. The functionality and internal logic of the SW versions must be comparable to the
HW ones.
Specification Description
S1 Each of the applications must also have a pure software implementation.
S2 The SW implementation must work similarly to the HW one.
S3 Benchmarks will compare both versions.

Requirement
R2 Accelerated versions must have an execution time that is at least 60% smalled than
the non-accelerated version.

Objective 7

Objective O7 states that the code must be clear and understandable.

Table 3.7: Requirements of objective O7

Requirement
R1 The code must be consistent and as clear as possible.
Specification Description
S1 Function, type and variable names must be descriptive.
S2 Code syntax must be consistent within each program.
S3 Comments must clarify relevant sections of the code.

Objective 8

Objective O8 states that the programs and underlying ideas must be documented.

Table 3.8: Requirements of objective O8

Requirement
R1 Jupyter Notebooks detailing the steps followed in the program must be provided for
each one of the applications.
Specification Description
S1 A single Jupyter Notebook must be provided for each application.
S2 The notebook must detail what is being done and why.

Requirement
R1 The ideas behind the programs and the development documentation must be present
in the state of the art and development sections of this document. Sections are chapters
6 and 7 respectively.

12



PROYECTO FIN DE GRADO

Objective 9

Objective O9 defines that the licenses given to the results of this project must be compatible with
the ones of the dependencies and each other.

Table 3.9: Requirements of objective O9

Requirement
R1 The software licenses of the results must be compatible with the ones of the sources
and libraries. There must be no licensing conflicts.

13





PROYECTO FIN DE GRADO

Chapter 4

Methodology and Resources

4.1 Kanban

Kanban methodology was used during the development of the project. Kanban comes from a
procedure that was used to track the route of a product throughout a factory. Similarly, the
current Kanban methodology tracks the state of tasks in a project. The methodology and word
have Japanese origin, “kan” meaning “visual” and “ban” meaning “card”.

The Kanban methodology is based on a board. The board gives all the necessary information
about the state of each task. It provides a convenient, quick way of determining the state of the
project or how it is doing regarding the pacification. It also provides “agile” flexibility to the
project as tasks can be easily and quickly moved or adapted depending on the requirements. Tasks
in Kanban are assigned to cards. Cards are placed in columns. In this specific project, five columns
were used. Columns are ordered and contain any number of cards. Cards can be moved from one
column to any adjacent column. Figure 4.1 shows a screenshot of the Kanban board at one point
of the project.

Fig. 4.1: Kanban board

15



4.Methodology and Resources

Instead of a physical board, a digital one provided by Trello was used, also seen in the screenshot
of figure 4.1. The Trello version that was used is free, provides many functionalities, team and or-
ganizational capabilities. Each tasks can be commented on, contain checklists, media, descriptions
and so on. It also has integration with many services including the ones of its parent company
Atlassian or others such as GitHub. Although these integration were not used in this project, they
are still useful and worth mentioning. This is specially true when considering a lot of software
developers use this methodology as means of development and communication with clients in the
form of issues, which are user requests sometimes turned into tasks.

The five columns used in this project are listed below. The usual life cycle of a task starts in the
first column and ends in the last, having gone through each other column in between at least one.

• TODO. This column contains tasks that have not been done yet and are not intended to be
carried out in short term.

• Queue. The queue contains the tasks that have not been done yet but are intended to be
carried out in the short term. Tasks are moved from Queue to the column to the right when
started.

• In Progress. Contains all the tasks being currently under development.

• Revision. Tasks in this column have been developed but need to be revised to ensure
everything is correct.

• Done. Contains all the completed tasks.

4.2 Resources

The human resources used for this project were the author, the director and an external consultant.
The author and director will take many roles in the budget to more accurately convey the actual
cost it would entail to have an engineer specialized in each field.

The digital resources will be analyzed in order of relevance. In the first place, the firmware,
programming languages, frameworks, libraries and so on used during development. This includes
PYNQ, interpreters and compilers... On second place, many Xilinx manuals were used. This,
combined with multitude of articles about PYNQ applications and repositories such as BNN-
PYNQ and QNN-MO-PYNQ was essential. All the code editing tools used in this project were
free: Vim, Jupyter Notebooks and PyCharm. To edit this document, the Overleaf LaTeX editor
was used with the template provided by the University of Deusto. Finally, the PYNQ forum was
used to post a question regarding overlay compression, and even if no solution was found it was a
helpful resource with great treatment and fast response times.

About physical resources, a Raspberry Pi 3 model B was used to run the initial programs in
an ARM device. PYNQ experimentation began on a PYNQ-Z1 board but it was changed for a
Ultra96-v1 board very early in the project. Access to both PYNQ boards, research and a lot of the
development was done in a personal computer running GNU/Linux. The personal computer has

16



PROYECTO FIN DE GRADO

Fig. 4.2: Picture of the PYNQ-Z1 (left) and Ultra96 (right) boards

a GPU compatible with the machine learning model training libraries, which saved a considerable
amount of ours. Vivado and other demanding software was all run in this computer. The boards
were accessed either with Jupyter Notebooks or SSH.

17





PROYECTO FIN DE GRADO

Chapter 5

Budget and Planning

5.1 Budget

Table 5.1 shows the expected budget for human resources. There are four profiles: project director,
researcher, developer and consultant. The project director coordinates the project and has an
expected investment of 60 hours. The researcher profile handles research and documentation taking
an expected amount 232 hours, while the developer writes, validates and tests the applications
taking 120 expected hours. Consultant accounts for actual people who helped with the project
either directly or through forums. The full schedule is detailed at section 5.2.

Table 5.1: Cost of human resources

Profile €/hour Hours Total cost [€]
Project Director 45 60 2,700
Researcher (Student) 38 232 8,816
Developer (Student) 36 120 4,320
Consultant 72 10 720

Total cost: 16,556

The material cost of the project represents the cost of the material acquired for the development
of the project, in this case the PYNQ-Z1 board and the Ultra96-board. It should be stated that
neither supposed a real personal cost and both were provided by the university. The material costs
disregarding electrical costs are shown in table 5.2.

19



5.Budget and Planning

Table 5.2: Cost of material resources

Material Price (€)
PYNQ-V1 199
Ultra96-v1 259

Total cost: 458

The total cost is therefore 17,014€.

5.2 Planning

Figure 4.1 shows the expected schedule of the project. The schedule has been modified, although
as little as possible. Sections about using certain libraries have been changed after choosing said
library to fit them better. Decisions about linearity have also been made: although facial recog-
nition and object detection could be developed in parallel, it was planned and done sequentially
because it is more efficient for the researchers. The planning needed to take into account the
documentation that was created during development.

Meetings with the project director took place weekly. These meetings consisted of discussing
topics and results, reporting the state of the project and recent advancements and mapping out
the immediate path to take afterwards. As a consequence of the COVID-19 outbreak, remote
meetings were had during great part of the project.

Figure 5.1 shows a Gantt diagram of the planned project schedule. The tasks correspond to the
project structure explained in section 2.2. The first tasks of the project are centered around research
and planning. The first development phase focuses on completing the facial recognition use case,
while the second focuses on object detection. After that comes the integration of both use-cases,
before writing the final documentation. Taking that into account, the following milestones can
were defined:

• Research on the new technology. Expected start and finish dates: from 2020-02-05 to
2020-02-24. This phase involves learning about and familiarizing with the Zynq architecture
and PYNQ framework. It is divided into three tasks: General research on the topics, the
creation of simple programs for PYNQ and deciding what accelerated applications will be
experimented next. Result: planning of the next steps.

• Facial recognition. Expected start and finish dates: from 2020-02-25 to 2020-03-27. This
milestone will be reached when a functional facial recognition is successfully created and
tested. With such a wide scope, it had to be split into thee sub-stages while each of the
sub-stages is divided into multiple tasks. Sub-stages are explained next. Result: functional,
accelerated facial recognition program.

– Research and library verification. Expected start and finish dates: from 2020-02-24
to 2020-03-05. This phase involves researching current developments on facial recogni-
tion applications on PYNQ or similar projects that could be useful for implementing it.

20



PROYECTO FIN DE GRADO

After the initial research, a library must be chosen, tested and benchmarked to enseure
that results will be positive.

– Development. Expected start and finish dates: from 2020-03-06 to 2020-03-24. The
library will likely need to be modified to serve the purpose of this project, which involves
researching on the AI technology being used and how models can be trained. After that,
a dataset needs to be created and the models trained, followed by validation and testing
of the results.

– Documentation. Expected start and finish dates: from 2020-03-25 to 2020-03-27.
Steps followed in the previous sub-phases must be documented to be reproducible.

• Object detection. Expected start and finish dates: from 2020-03-30 to 2020-04-14. Sim-
ilarly to the facial recognition milestone, this one marks the successful development of an
object detection application. Steps are similar to the ones of facial recognition, but knowl-
edge gained during the previous phase should prove useful and reduce the development time
of this phase. Each of the sub-phases is described bellow. Result: functional, accelerated
object detection program.

– Research and library verification. Expected start and finish dates: from 2020-03-
30 to 2020-04-02. Research what the current state of the art is in object recognition on
PYNQ, select a library and test it.

– Development. Expected start and finish dates: from 2020-04-03 to 2020-04-09. This
sub-phase involves modifying the library to fit the use-case before validating and testing
the results.

– Documentation. Expected start and finish dates: from 2020-04-10 to 2020-04-14.
This sub-phase involves documentation the entire phase to ensure previous steps repro-
ducible.

• Integration of facial recognition and object detection. Expected start and finish dates:
from 2020-04-15 to 2020-04-30. The goal of this phase is to integrate both use cases into a
single application. The proposed way of doing so is by integrating both overlays into one,
therefore overlays and overlay design need to be more thoroughly studied. After that, a new
design will be created, validated and tested. Finally the application will be benchmarked.
Tasks from research to validation are expected to take from 2020-04-15 to 2020-04-28. The
steps need to be documented, which is expected to happen from 2020-04-29 to 2020-04-30.
Result: integrated application of facial recognition and object detection.

• Documentation. Expected start and finish dates: from 2020-05-01 to 2020-06-04. This
milestone represents the completion of the project documentation that will be delivered. It
needs to be written, verified and corrected iterative. Result: project documentation.

Figure 5.1 shows an additional task at the end of the project: “Project closure”. This involves
preparing results by, for example, publishing private repositories were code was hosted during the
development. The diagram shows a total of 88 days dedicated to the project, assuming four ours
are dedicated each day. The amount of dedicated time will however depend on factors such as
academical or professional workload. There is room for adjustment between the final day (June 3)
and the thesis delivery deadline (June 24).

21



5.Budget and Planning

Fig. 5.1: Project schedule

22



PROYECTO FIN DE GRADO

Chapter 6

State of the Art

This section provides an overview to the relevant fields this project encompasses. Before continuing
it is worth mentioning novelty of the adopted architecture and platform, and the studied projects
such as FINN are the state of the art in the field of artificial vision in embedded devices. The
other two analyzed topics in the “Preceding Projects” section are also pushing forward different
scenarios where the platform provides performance advantages.

The platform is also innovative in another aspect: despite Despite the advanced knowledge in
programmable logic, as well as in the architecture of the buses that allow the intercommunication
between the processors and the FPGA, the PYNQ architecture is not only intended for people
with knowledge on that area. If a “library” (it is not officially called library, but in this point the
concept helps shedding a light on the idea) with the intended functionality exists, the programmer
has only to download it to the PL and call it from C, or in this case Python, code. While still
in development and maturing, the PYNQ platform and underlying technologies discussed in this
section may have a great impact on future embedded devices.

6.1 Key Areas

This section discusses edge computing and SoC. These are two of the areas that might be more
impacted by the success of Zynq and PYNQ. Edge Computing methodology and applications are
currently designed majorly for non-accelerated embedded devices or local servers, but Zynq could
mean that embedded devices are capable of running tasks currently assigned to local servers in
specific, accelerate cases. Regarding SoCs, the way Zynq contains and communicates two heteroge-
neous processors could find greater adoption and research if Zynq (or PYNQ and therefore Zynq)
gain even more traction.

23



6.State of the Art

6.1.1 Edge Computing

Edge computing refers to a paradigm shift where data processing and storage of IoT applications
are partially moved near where the data is acquired. It is not a new concept but is becoming
increasingly popular with the rise of IoT related industries. In the context of this project, edge
computing is done with low-power devices not comparable to the central servers of a service and
thus lacking the required power to perform complex manipulations to the data. That however
may change with the heterogeneous MPSoC architectures introduced in the SoC section. Edge
computing can reduce the latency and broadband requirements of the system, as well as lighten
the server load. The main advantage is clear: it benefits efficiency and flexibility. It may, however,
involve increased complexity and risks. Each device adds more complexity to the overall system,
which is specially true when each device is complex on itself. Adding more critical devices reduces
the importance of each device, which translates to a reduced impact if a single device fails. From a
security point of view, it also increases the attack surface of the system, aside from requiring new
data policies (e.g. an edge computing with confidential data may be more vulnerable than central
servers).

The benefits and shortcomings of edge computing should be analyzed for each application, but in
this specific project, it is considered favorable as it would considerably reduce critical factors such
as network saturation or latency. The device and platform examined from this point of view in this
thesis: as potential edge computing devices that stand out from other products for their unique
characteristics.

6.1.2 System-on-Chip

A System-on-Chip or SoC integrates the components of an electronic system in a single, integrated
circuit. In the case of the Zynq architecture explained in section 6.2, the system contains an ARM
processor, an FPGA, memory and IO components. Having multiple processing units means it is a
Multiprocessor System-on-Chip or MPSoC. SoC is a common technology in modern markets such
as mobile and edge computing, which is closely related to this subject.

The integration of SoC implies multiple benefits, the most notable ones being the reduced area
usage, power consumption and latency, and increased performance than their multi-chip counter-
parts. As mentioned before, MPSoCs could gain popularity amongst engineers and researchers
based on the success of Zynq.

6.2 Platform Overview

This section studies both the Zynq architecture and the PYNQ framework. Zynq UltraScale+ and
PYNQ are very recent developments, in fact, PYNQ was only created a few years ago and while it
has already proven itself really useful and grown a community, it still has a lot of growth potential.

24



PROYECTO FIN DE GRADO

Fig. 6.1: Zynq-7000 architectural overview (source: [2])

6.2.1 Zynq

This project uses Zynq UltraScale+ architecture [1], the successor to Zynq-7000. This document
refers to Zynq as an inclusion of both, knowing that UltraScale+ is the most modern architecture.
Zynq-7000 is a family of heterogeneous SoCs designed by Xilinx for complex tasks such as the
machine vision studied in this project. It is designed with a processor-centric approach instead of
the more traditional FPGA-centric approach. The processor-centric approach means the PS boots
first and standard processes such as running the operating system or interacting with the board
are done as in other, single processor devices. This makes the development process more natural
to the majority of developers. This section analyzes the Zynq-7000 architecture and explicitly
remarks differences with UltraScale when relevant.

Figure 6.1 shows the functional blocks and connections of functional blocks of the Zynq-7000
architecture. The processors are divided into the processing system or PS and the programmable
logic or PL. The PS and PL communicate via AXI interfaces. AXI interfaces are designed for on-
chip communications and offer benefits for high-performance, parallel, synchronous communication.
The bit size of the ports varies, some being of 32 bits, others of 64 and 128 bits. The AXI interfaces
offer lower latency and higher bandwidth than more traditional connections. The AXI connections
are seen in figure 6.1 as arrows between functional blocks. The legend of the figure gives additional

25



6.State of the Art

information as to how to interpret the connections.

The PS can be seen in the upper half of figure 6.1 contains the application processor unit, memory
interfaces, IO peripherals and the interconnect interface. Zynq 7000 devices have 32 bit ARM
processors, while Zynq UltraScale+ devices have 64-bit processors. Zynq UltraScale+ devices also
include a dual-core RPU and an optional GPU [3]. These paragraphs will examine each one of the
main components in more detail. Each core of the processor in the APU has an L1 cache, there
is an L2 cache that is shared between processors. It is worth noting that while the APU in figure
6.1 has two cores, the number of cores for Zynq UltraScale+ devices may be either two or four. It
has low latency access to the on-chip RAM described later in this section. Although not explicitly
discussed here, it also has standard features such as interruptions, timers, tracing mechanisms and
a MMU to manage virtual memory.

Fig. 6.2: Zynq-UltraScale+ component overview (source: [4])

The PS has two memory interface types: dynamic and static. The dynamic memory interfaces
handle the CPU L2 caches, shared memory with the PL and interconnect components. They
include a multi-protocol DDR memory controller that enables shared access to memory from both
the PS and PL via AXI ports. The IO peripherals are explained in section 6.3, but it is worth
noting that they can be exposed via multiplexed IO pins (MIO) or combining MIO and pins
belonging to the PL. That combination is denominated extended MIO or EMIO. “Interconnect”
refers to the connection between architectural components: APU, PL, IO peripherals and so on
are connected to each other via multilayered ARM AMBA AXI connections, again as shown in

26



PROYECTO FIN DE GRADO

Fig. 6.3: PL interface to PS memory (source: [4])

figure 6.1. According to the datasheets [4] the interconnect is designed in such a way that the most
time-sensitive modules that require minimal latency have the shortest paths to memory. A QoS
block exists to regulate traffic between the components. Figure 6.2 shows the components of the
Zynq UltraScale+ architecture, which as already mentioned contains more features than the Zynq
7000 architecture.

Zynq UltraScale+ devices also include memory protection and peripheral protection units devel-
oped by Xilinx, additional units such as a platform management unit or a configuration and secu-
rity unit, and a more advanced DMA controller. Lastly, more standard and high-speed peripheral
connections are available than in Zynq-7000.

Regarding the PL, LUTs can be used either as a single 6 input 1 output LUT or as two 5 input 1
output LUTs. The equivalence is a 64 bit ROM for the single, 6 input LUT and two 32 bit ROMs
for the dual 5 input LUTs. CLBs are composed of two slices that are themselves composed of four
LUTs and corresponding components (e.g. two flip-flops corresponding to each LUT).

The PS-PL interface is complex and includes many components, protocols and ports. As seen
in figures 6.1 and 6.3, communication from PL to PS happens when the PL writes to the four
corresponding AXI ports. The writes are buffered with FIFO controllers. The output ports then
go to either the DDR or OCM. This provides the PL a way of accessing the DDR and OCM
memories of the PS, but when coherence is required in the access, the ACP interface should be
used, shown in figure 6.1, which goes through the corresponding controllers.

Summing up, Zynq is an architecture that offers a PS-centric approach and a low-consumption,
low-latency, highly efficient connection between the PS and PL.

27



6.State of the Art

Fig. 6.4: PYNQ application overview (source [5])

6.2.2 PYNQ

PYNQ is an open-source framework that enables development for the Zynq architecture without
requiring the design of PL circuits. Software for PYNQ is developed in Python. The framework has
Jupyter Notebooks installed so academical or explanatory documents containing executable, live
code can be created. This is useful not only for getting used to the framework while going through
the notebooks but also to develop in an organized way and to publish the research results in an
accessible manner. Multiple introductory notebooks are included in PYNQ to get familiarized with
the framework. An overview of PYNQ is shown in figure 6.4. The framework includes a Python
library, documentation, programs that serve as examples, amongst others.

PYNQ is also the name of the Python library. The library setup scripts contain functions to
validate the device it is installed on and to install additional utilities such as the documentation or
the introductory Jupyter Notebooks. PYNQ can be downloaded from prebuilt binaries or manually
compiled from an appropriate version of the repository in a supported device.

The library exposes many functionalities of Zynq, such as IO operations, PS/PL management
or memory management. It provides acceleration abstraction using overlays. A PYNQ overlay
is a hardware library or PL design that allows the implementation of applications to the PL in
addition of the PS. An API for controlling the overlays and thus the PL from Python is offered in
the PYNQ library. The accelerated part of an application is located in an overlay. Designs can be
downloaded to the PL without overlays by using bitstreams. Overlays include both a bitstream
(.bit) and scripting (.tcl) files that usually enables, amongst other things, to identify Zynq system
configurations or to rebuild the Vivado project from the overlay. Both overlays and bitstreams
have corresponding Python classes in the library.

28



PROYECTO FIN DE GRADO

Additionally, PYNQ is reliant on NumPy [6] for data management and is compatible with Asyncio
[7]. As explained in section 6.2.2.2, NumPy is a scientific computing library and Asyncio offers a
high level concurrency model, both very useful for PYNQ enabled devices.

PYNQ is pushing boundaries, allowing developers without expertise on programmable logic to
develop programs that run on FPGAs with the considerable performance benefits it implies.

6.2.2.1 PYNQ application example

The PYNQ Hello World repository [8] created by Xilinx provides a good example to visualize how
PYNQ allows exploiting the benefits offered by Zynq without diving too deep into architecture
specifics. The example shows only the most relevant segments, but the full example can be accessed
at the source. In this specific example, the PL will be used to scale an image from dimensions
AxB to dimensions CxD. This is done with an IP of the resizer.bit overlay. Listing 6.1 shows the
overlay download and the assignation of the DMA, resizer IP and memory allocator to Python
variables.

1 resize_design = Overlay (" resizer .bit")
2 dma = resize_design . axi_dma_0
3 resizer = resize_design . resize_accel_0
4 xlnk = Xlnk ()

Listing 6.1: ”IP extraction from the resizer overlay”

After opening an image and saving it in a variable called image, the values forming the image exist
only in the local memory of Python. By allocating shared memory with Xlink, the developer is able
to save and read data from addresses that will also be accessible to the PL thanks to the DMA.
This is done with the code shown in listing 6.2. The image will be resized from AxB to CxD, each
with three 8-bit color channels, thus the shape of the array.

1 in_buffer = xlnk. cma_array ( shape =(A, B, 3) , dtype =np.uint8 , cacheable =1)
2 out_buffer = xlnk. cma_array ( shape =(C, D, 3) , dtype =np.uint8 , cacheable =1)
3 in_buffer [:] = np. array ( image )

Listing 6.2: ”Memory allocation”

The last statement makes a deep copy of the image that was on the local Python memory to the
shared memory. It is necessary to make a deep copy, as by default Python uses references when
copying lists and other objects. Figure 6.5 shows an scheme of Zynq at this point of execution.

29



6.State of the Art

Fig. 6.5: State of the program with image in local and shared memory (source [8])

The next step is to make the data accessible to the PL, wait for it to process it, and read the
results. Listing 6.3 writes the old and new dimensions to the corresponding registers (0x10 for A,
0x18 for B and so on), associates the shared memory previously allocated with the PL, starts the
process by writing to the corresponding segment (0x81) and waits for the result to be written to
the memory address associated to the output.

1 resizer . write (0x10 , A)
2 resizer . write (0x18 , B)
3 resizer . write (0x20 , C)
4 resizer . write (0x28 , D)
5
6 dma. sendchannel . transfer ( in_buffer )
7 dma. recvchannel . transfer ( out_buffer )
8 resizer . write (0x00 ,0 x81)
9 dma. sendchannel .wait ()

10 dma. recvchannel .wait ()

Listing 6.3: ”PL usage”

It should be mentioned that theses steps can easily be abstracted from the end user by providing
higher-level functions that handle specific addresses, thus in some PYNQ applications it will be
managed by the library itself instead of the library user. Figure 6.6 shows the components involved
in the data being processed by the PL.

This example shows how, despite requiring some knowledge of the system, developing applications
with PYNQ can be far more productive than doing so for other architectures that require different
programming languages, architectural knowledge and communication management. Setting up
the PL is trivial, as well as communicating it with the PS. Having the overlays loaded from files
means they can be easily loaded for specific applications as long as the bitstreams are available on
the board. The full example in the form of a Jupyter Notebook can be accessed at the original
repository [8].

30



PROYECTO FIN DE GRADO

Fig. 6.6: State of the program when using the PL (source [8])

6.2.2.2 Python

Python is a multi-paradigm programming language and is one of the most popular, growing pro-
gramming languages. Its high level design but low-level capabilities make it the language of choice
for a very wide range of applications. Being an interpreted language and having interactive tools
like Jupyter Notebook also makes it a good choice for PYNQ. The standard implementation of
the Python interpreter, CPython, is written in the C programming language. The language has
compatibility with C via bindings, which are handy when performance is required and allow the
usage of C libraries from Python. This is specially useful in microcontrollers and is used in this
project, as explained in section 7.3.1. Its wide adoption, multi-paradigm design, compatibility
with other languages and range of options when choosing interpreters or compilers have resulted
in Python being available for many different types of devices: from high-performing servers to
personal computers and microcontrollers.

The aforementioned NumPy is a python package that intended for vector and matrix manipulation.
The performance demanding parts are written in C instead of Python, which is advantageous not
only regarding performance but also data type compatibility. Asyncio, as mentioned before, is used
to write concurrent python code by running functions as co-routines that are executed concurrently.
Actions such as waiting for resources can be executed without blocking the flow of the program,
useful for devices that use low power or have a low core count such as the one used in this project.

Despite its many advantages, Python is still slower and consumes more resources than C. C is
called multiple times from Python in the libraries used in this project, and how this is done will
be explained in sections 7.2.2 and 7.3 in the “Development” chapter.

31



6.State of the Art

Fig. 6.7: Jupyter Notebook example

6.2.2.3 Jupyter Notebooks

Jupyter Notebook is a web application used to create documents that contain executable code as
well as multimedia resources, equations, text-formatting and many of the features expected from
document editors. The code can be either Julia, Python or R forming the name Ju-Pyt-R or
Jupyter. Like many other tools and resources used in this project, Jupyter Notebooks is open-
sourced and free software. The code inside a document is organized in blocks that are managed
by “kernels”, programs in charge of event management (including code execution) that can be
managed separately. The kernels, as well as the rest of the components, run in the host machine
and thus the execution of the code is remote.

Figure 6.7 shows a screenshot of a Jupyter Notebook running on a PYNQ device. The notebook
shown in the figure is included in PYNQ to show how Jupyter Notebook works with a random noise
generation example. The notebook is accessed with a web browser and has two main parts: the
menu and the notebook. The menu contains options for the Jupyter Notebook environment, the
specific notebook and information about the status of the notebook or the programming language
being used. The notebook contains text and blocks of code that can be executed at any moment,
with the output of the execution being displayed right beneath the block.

32



PROYECTO FIN DE GRADO

6.3 Board Overview

The board used in this project is the Ultra96-V1. It reached the end of its short life when it stopped
being produced in April 2019 to be replaced by the Ultra96-V2. The main difference between the
V1 and V2 is the radio module, which does not affect this project. From this point the Ultra96-V1
will also be referred to as Ultra96 for brevity, despite actually Ultra96 being the family of boards
the Ultra96-V1 and the Ultra96-V2 are part of. Figure 6.8 shows a picture of the Ultra96-v1 board.

Fig. 6.8: Picture of the Ultra96-v1 board (source: [9])

It’s a Zynq UltraScale+ device and the basic specifications of the board components are listed
below.

• Xilinx Zynq UltraScale+ MPSoC ZU3EG A484 SoC

• 2GB LPDDR4 memory in a 512M x 32 configuration by Micron

• 802.11b/g /n Wi-Fi and Bluetooth 4.2 modules. The Bluetooth module supports for BC and
BLE connections.

• micro-SD card slot

• Mini DisplayPort

• 8V-18V, 3A power source with connector with 1.7mm inner and 4.8mm outer diameters

According to the product tables [2] the ZU3EG MPSoC, the processing system has the specifications
listed in figure 6.9. The specifications of the programmable logic are listed in figure 6.10. The
PS and PS components are connected by 12 AXI ports of 32/64/128b. According to the MPSoC
ordering nomenclature described in [2], the complete name of the device, ZU3EG SBVA484, can
be divided into the following descriptors:

• XC: “Xilinx Commercial””

• ZU: Zynq UltraScale+ product.

• 3: Value index of the product. Some specifications of the product vary according to the value
index, and all variations are detailed in the product table [2]. The most notable ones include
the number of memory blocks and the signal data transmission rate.

33



6.State of the Art

Fig. 6.9: PS specifications (source: [2])

• E: Quad APU, Dual RPU, Single GPU architecture.

• G: Specifies that the engine is designed for general purposes.

• S: Flip-chip with 0.8 mm ball pitch.

• B: Lidless.

• V: Refers to a hazardous substance use in electronic devices, in this case it is RoHS 6/6.

• A: Package designator.

• 484: Pin count.

Figure 6.10 is missing the speed grades, which in EG devices can take the following three values
depending on the temperature grade. If the temperature grade is Extended (E), the values are
-1, -2 or -2L (slowest, mid and low-power respectively) and support temperatures between 0º and
100ºC. If the temperature grade is Industrial (I) the temperature ranges from -40ºC to 100ºC
and the -2L value is replaced by -1L, a slower low-power mode. The following values are missing
decimals in the figure: System Logic Cells: 154,350; CLB-Flip-Flops: 141,120; CLB LUTs: 71,560.
These values are still in (K).

Fig. 6.10: PL specifications (source: [2])

34



PROYECTO FIN DE GRADO

Artificial vision, the target application of this project, is comparable to some of the activities listed
in the aforementioned product table as an intended use for “EG” devices. The full list includes
cloud computing security, data center, flight navigation, machine vision, medical endoscopy, missile
and munitions, military construction, networking, and secure solutions.

Figure 6.11 shows a block diagram of the main components of the board. The center of the image
shows the memory, PS and PL blocks while the laterals show IO components.

Fig. 6.11: Ultra96 block diagram (source: [10])

A micro-SD card is used as permanent storage and contains the operating system, as explained
in section 6.2. The firmware version used in this project is the v2.4, which contains the “pynq
4.14.0-xilinx-v2018.3 aarch64” Linux version.

6.4 High-Level Synthesis

Historically, developing complex applications for FPGAs has in many cases been noticeably more
difficult than doing so for other processor types, and has usually required more resource and time
investment as well as a deep understanding of the architecture the programs are being design
for. Vivado High-Level Synthesis or HLS [11] aims to solve that problem by providing a way of
develop software to be run on FPGAs using programming languages such as C or C++. The HLS
compiler receives source code written in C, C++ or SystemC and converts the functionality of the
program to FPGA designs on Verilog and VHDL. It does so by extracting the data-flow and control
structures from the source code and implementing its hardware equivalent. Some structures can be
implemented in several ways, HLS deals with this ambiguity by following specific design directives
that may, for example, consume less resources but offer less throughput or the other way around.
HLS provides some degree of flexibility as to how functions and control structures are implemented
in order to best fit specific designs by optimizing latency or area. Code segments are converted
into state-machines that can be implemented in hardware, talking into account types, variables,
functions, I/O and operations. An RTL is created from each function [12]. Figure 6.12 shows an

35



6.State of the Art

Fig. 6.12: HLS validation and verification (source: [12])

overview of the input and output of the HLS compiler.

The compiler has two main phases: scheduling and binding. Scheduling is the action of determining
when operations will occur while binding assigns hardware units to the operations. The HLS
compiler offers source validation and design verification as shown in figure 6.12. The “Vivado
High-Level Synthesis” chapter of [11] gives deeper insight into how the HLS compiler performs
transformations and optimizations. The capability of automatically creating FPGA designs from C
source code is invaluable regarding project complexity and efficiency, which is why the applications
described in section use HLS to implement certain types of neural networks on FPGAs.

6.5 Preceding Projects

This section discusses two relevant, existing projects for this thesis, and FINN which is a depen-
dency both preceeding projects have.

6.5.1 FINN

FINN [13] is a framework developed by Xilinx Research Labs that enables deep neural network
inference on FPGAs. It is based on the idea that convolutional neural networks usually have
redundancies that mean the network can be reduced with little cost to their accuracy, making

36



PROYECTO FIN DE GRADO

them a valid target for FPGAs. Figure 6.13 shows every step a trained neural network goes
through to being implemented in a FPGA and be callable from PYNQ.

The creation of the trained neural network is detailed in sections 7.2.1 and 7.3.1 where the steps
are followed to create different networks for the project applications. For now, the network is
trained using tools described in the aforementioned sections and formatted for FINN. After that,
FINN converts the model to the ONNX open standard. The next stage is the network preparation:
sequential steps were the model is transformed, converted to Vivado HLS layers and optimized.
HLS enables programs written, in this case, in C++ to be targeted into Xilinx devices, in this case,
the PL of the Zynq UltraScale+ device. The HLS compiler optimizes the design latency, power
and throughput, checking program operations and control structures for potential improvements.
The C++ source files of the FINN library are available on a repository hosted on GitHub [15]. The
next steps consist on creating the IPs and Vivado designs of the program, which will become vital
in section 7.4. The last phase, which in 6.13 is called “PYNQ HW Gen & Deployment”, considers
both the bitstream generation and the PYNQ code generation, which can be imported from Python
when using the generated bitstream. In some cases, like the ones mentioned at the beginning of the
paragraph, said code is wrapped and abstracts developers from manually downloading the overlay.

6.5.2 Binarized Neural Networks

Xilinx developed a BNN repository, BNN-PYNQ [16], for PYNQ which uses FINN and includes
explanations on how it works and how to train models of the repository. BNNs use binary (±1)
weight and activation instead of floating point values [17], significantly reducing the computational
complexity of connections in the neural network. The BNNs of this project can take different
values for weights and activation functions. There are three implementations in the project:

• 1b weights and 2b activation functions, W1A1

• 1b weights and 2b activation functions, W1A2

• 1b weights and 2b activation functions, W2A2

W1A1 and W1A1 are used for both LFC and CNV network topologies, while W2A2 are only used
for CNV topologies [13]. LFC networks have three fully connected layers, each layer with 1024
neurons. They take a 28x28 (grayscale image of 28x28 pixels) array as input and output a 10
bit value in One-Hot format, explained in section 7.2.1. CNV networks on the other hand have
different types of concatenated layers. They take a 3x8x32x32 (8 bit RGB image of 32x32 pixels)
array and output a 10x16 vector. LFC and CNV topology diagrams can be seen in figures 6.14
and 6.15 respectively.

BNNs are used both in [17] and the BNN-PYNQ repository to classify the same types of images.
The first type of images they are used to classify are handwritten digits, for which the models
are trained with the MNIST data-set. The second type classifies single objects in an image and is
trained with the CIFRAR-10 data-set. BNNs are usually used for machine vision, as can be seen
in the aforementioned examples.

37



6.State of the Art

Fig. 6.13: FINN flow (source: [14])

38



PROYECTO FIN DE GRADO

Fig. 6.14: LFC diagram (source: [18])

Fig. 6.15: CNV diagram (source [18])

As previously mentioned, the BNN-PYNQ repository contains documented sections about how
to train models for different topologies and contains overlays (.bit + .tcl) for each of the pre-
trained networks. The Vivado projects can be reconstructed with the provided script, which is a
requirement for 7.4.

6.5.3 Quantized Neural Networks

There is a QNN-MO-PYNQ repository [19] developed by Xilinx that implements QNNs for PYNQ.
Quantized Neural Networks have low precision values for weights and activation functions [20], and
could be considered a super-set of BNNs. When QNNs take values with such low precision as single
bits they are equivalent to BNNs.

The repository implements an object detection algorithm called YOLO [21]. It has evolved over
time and there are multiple versions of it, but the one used in this project is a modification of
YOLOv2 that gives up accuracy for the sake of performance. YOLO is explained in depth in [22],
but a brief explanation is due in this section. It is a computer vision algorithm that implements
both a classifier and object locator in a single neural network. It divides the input image into
regions, checks and compares the probability of each class to be on each region, and outputs the
score of the classes for the regions. Threshold parameters determine required certainty values
for predictions to be accepted, as explained in section 7.3.1. Humans are amongst the classes
contemplated by the classifier, which is convenient for this thesis. In theory, it means the overlay
generated from the pre-trained model can be used directly, although as detailed in section 7.3.1,
that was not the case.

As seen in figure 6.16 the first and last layers have weight and activation sizes that are not com-
patible with the QNN accelerations. The 8 bits for each weight and activations means the first and

39



6.State of the Art

Fig. 6.16: TinierYOLO topology (source: [19])

last layers must be run in the ARM processor instead of the PL. For this the Darknet [23] library
is used, an open source neural network framework developed in C.

40



PROYECTO FIN DE GRADO

Chapter 7

Development

This chapter describes the more relevant aspects of the development phase of the project more or
less in chronological order starting with getting familiarized with the board, later with the facial
recognition and object detection use cases and finally with the integration of both. There is also
a small section at the end listing changes made to libraries that were forked from their original
repositories for this project.

7.1 Familiarization with the PYNQ Platform

After finding possible uses cases by profiling programs in an ARM device, as told in the motivation
section (section 1.2), familiarization with the board began. Although the project was started with
a PYNQ-Z1 board, this section describes the process on an Ultra96-v1 board. The first step is to
download the firmware and dump in on a micro-SD card. The firmware version 2.4 was used for
development, however the 2.5 is currently available.

After writing the firmware, the board boots as a normal Debian-based GNU/Linux system. It
has SSH enabled by default, but more accessible configuration options are available as Jupyter
Notebooks in a folder with the name “common”. Connections to and from the board were initially
made with the USB interface but were switched to WiFi for convenience. The Jupyter Notebook
available to configure the WiFi was not making changes persistent, the wpa_supplicant configuration
files were edited to make the configuration persistent. After being assigned a static local IP address
to avoid depending on services such as Avahi, and with both SSH and Jupyter Notebooks available,
accessing the board is trivial.

With the board running, the next step is to create some toy programs for PYNQ. The first programs
that were created used components of OpenCV accelerated by Xilinx and offered in the PYNQ
CV repository [24]. The package exposes some OpenCV functions as accelerated versions from the
xfOpenCV [25] and contains example Jupyter Notebooks. The Cython (C and Python compiler)
version (0.26.x) installed with the board had compatibility issues with the latest version of PYNQ
CV and needed to be updated to at least version 0.29.14. After doing so and installing PYNQ CV,

41



7.Development

it was found that the version of OpenCV natively installed in PYNQ was missing features and it
too needed to be updated. The simplest way of doing so was by cloning the OpenCV repository and
manually compiling/installing it, which took several ours. Once OpenCV was updated, everything
was ready to create programs.

The first programs consisted of taking image files, running them through OpenCV filters with and
without acceleration and compare the performance in both cases. After that images were taken
from a webcam stream and run through several filters to test the real-time capabilities of PYNQ,
which turned out to be impressive: filters run a few orders of magnitude faster. After that, the
facial recognition use case was studied.

7.2 Facial Recognition

After examining PYNQ projects, BNN-PYNQ [16] was chosen. This section details how the PYNQ
applications used to classify handwritten digits and traffic signs were repurposed to identify faces.
Two of the topologies described in section 6.5.2 were used: LFC and CNV. LFC was originally
used for classifying digits and produces smaller networks which makes it the preferred choice to be
integrated with the object recognition into a single program, despite its reduced accuracy. CNV
models are more accurate, but also more demanding. They were used to identify traffic signs as
described in the state-of-the-art chapter. What follows is a setup and a usage section for both LFC
and CNV, despite some parts of the processes being very similar.

When designing applications for FPGA, the most relevant constraint may usually be resource
usage, such as the limited amount of logic blocks available. This makes the design area usage very
relevant, in contrast to processors with architectures like ARM in which the most usual constraint
is execution time. That is why two topologies were tested with the idea of using the ones with less
resource consumption for the integration described in section 7.4.

Facial recognition models were trained using the Yale Faces [26] dataset, which provides eleven
different pictures of fifteen people. A dataset this size is manageable for the data conversion steps
while still providing good results.

7.2.1 LFC Setup

Based on [13] and the topology descriptions, LFCs are less demanding than CNV and were the
first choice for facial recognition before trying the CNV topology. There is a model included in the
BNN-PYNQ repository used to classify handwritten digits. The steps described below are required
to train it for facial recognition.

Data classification

This step is straightforward: classify pictures of faces of different people into folders with each
person’s name. If using the Yale Faces dataset, this is already done. Despite the initial assumption

42



PROYECTO FIN DE GRADO

Fig. 7.1: Dataset directory structure

that only 10-bit output values were possible, after examining the training scripts it was found that
the LFC network creation function accepts up to 64 bits.

Data splitting

The classified images must be split into these sets: the training set, validation set and test set.
The arbitrarily chosen proportion is 70%, 15% and 15%, respectively. The training set will be used
to test the model. Initially, the training and validation images will be in the same set and will be
split into 70% and 15% during the training step described in section 7.2.1.

Data formatting

The images need to be grayscale images, have a size of 28x28 pixels and the labels, which identify
the images, need to be in one-hot encoded format [27]. The one-hot format uses a set of bits
with a single bit active at any time, to represent a state, and increases performance when used
in the FPGA design [28]. The LFC topology used in this project do use the one-hot encoding
internally [13]. Fortunately, labels are converted by the training script of section 7.2.1 and don’t
need to be changed manually.

A modification repository created by Gregory S. Kielian [29] for this specific data image conversion
was used. The repository requires the dataset to have the structure shown in figure 7.1. The folder
0 represents the first class of the model, 1 the second and so on. The classes are defined in the
file batches.meta.txt. Each line represents a class, in order and there must be one class for each
person to be recognized. Therefore, if the first person were “Mikel”, the first line of batches.meta.txt

would be mikel and their pictures would be in folder 0. For the sake of simplicity, labels range from
“Person 0” to “Person 14”.

The resizing shell script is derived from resize-script.sh the file in the original repository, as shown
in listing 7.1. In addition to resizing, all the original images in the RGB color model are converted
to grayscale. In this case, the original files were in PNG format.

43



7.Development

1 #!/ bin / bash
2
3 height =28
4 width =28
5
6 for file in training - images /*/*. png; do
7 convert " $file " -colorspace Gray \
8 -resize "${ width }x${ height }"\! "${file %.*}. jpg"
9 rm " $file "

10 done
11
12 # ... repeat loop for each set

Listing 7.1: ”Image modification script”

The final conversion script, which encoded the images in one-hot format, had issues that Phuong
Le’s fork [30] solved. The only modification the fork required was setting the color channels from
three to one. Executing the file converter.py generates the custom folder with the output in four
compressed files. The files with names matching test* must be renamed to t10k* for compatibility
with the BNN-PYNQ repository [16]. The four files will therefore be: t10k-images-idx3-ubyte.gz

, t10k-labels-idx1-ubyte.gz, train-images-idx3-ubyte.gz, and train-labels-idx1-ubyte.gz. These four
files need to be extracted and moved to the directory pointed to by the environmental variable
PYLEARN_DATA_PATH for pylearn to locate them. The directory is, in this case, ˜/.pylearn2/pylearn2/

scripts/datasets/mnist. It will be mentioned again before the description of the model training.

Model creation and training

Training the model took half an hour with an Nvidia GTX 1070 GPU. The necessary drivers and
libraries were installed with steps similar to the ones described in the training section of the BNN-
PYNQ repository but for an Arch Linux system instead of Debian-based distribution. No virtual
environments were used because it is a system dedicated to this project.

There are some modifications that need to be made to the training scripts before proceeding. All
of the files and folders mentioned during the next steps are in the training folder bnn/src/training/.
For LFC, the file that must be changed is mnist.py. There are three main changes that need to
be made: change the set sizes, change the output size number and the batch size. Set sizes must
be modified to correspond to the training, validation and test sets. Output size must be changed
from 10 to 15 bits to fit the fifteen faces of the dataset. The batch size does not have to change
necessarily, but given the small size of the set it is recommended, as it dictates how often the model
is updated during training.

The training, validation and test size is changed by modifying lines 122 to 124 have the correct
number of images in each dataset. The validation images are a subset of the training dataset
created in the previous step that is not used for training. In the example shown in listing 7.2, the
total number of images is 200 and the proportion is still 70%, 15% and 15% for training, validation
and testing respectively. Batch size is modified by changing the batch_size variable, and output
size by changing “10” by “15” in the one-hot encoding and LFC generation sections.

44



PROYECTO FIN DE GRADO

121 ...
122 train_set = MNIST ( which_set =’train ’, start =0, stop =140 , center = False )
123 valid_set = MNIST ( which_set =’train ’, start =140 , stop =170 , center = False )
124 test_set = MNIST ( which_set =’test ’, start =170 , stop =200 , center = False )
125 ...

Listing 7.2: ”Sample of mnist.py”

Before executing the file, the following dependencies must be installed.

• Python 2.7. The training libraries require the 2.7 version of python, despite the rest of the
project having been developed in the 3.6+ version.

• Theano. A mathematical expression evaluation compilation optimization library that com-
piles expressions to accelerate them in CPUs or GPUs like in this case.

• Pylearn 2. A machine learning framework that uses Theano under the hood. The MNIST
library used by the mnist.py file in the BNN-PYNQ project is imported from Pylearn 2. Some
difficulties were encountered with this library, described in section 7.5.

• Lasagne. Lasagne is a library used to create and train neural networks using Theano.

• Additional packages. General use packages that were not already installed in the system
or environment, in this case Pillow, scipy and six.

The version of each module used in this project is displayed in listing 7.3. Pylearn2 is different
than the rest, as during development the package being imported was under development to make
the changes described in section 7.5. This means the pip develop command was used for Pylearn2
instead of the standard pip install.

1 Lasagne ==0.2. dev1
2 numpy ==1.16.6
3 Pillow ==6.2.1
4 -e git+ git@github .com: mikelsr / pylearn2 . git@a2f970b8482b6aace80e41692090352c54011113

# egg = pylearn2
5 scipy ==1.2.3
6 six ==1.14.0
7 Theano ==0.8.0

Listing 7.3: ”Module versions”

Additionally, the *-ubyte.gz files generated in a previous step must be extracted into a folder named
”mnist” in the folder pointed at the PYLEARN2_DATA_PATH environment variable. Once this is done, the
mnsit.py will create a model and train the (in this case) facial recognition model. It can have either
1-bit or 2-bit activation functions by passing -ab 1 or -ab 2 as parameters. The next paragraph
assumes two activation bits, but both 1 and 2 bit networks are included in the project results. The
only difference with single bit activation is changing “2” for “1” in file and directory names. The
best epoch out of 1000 from the LFCW1A2 training is shown in figure 7.2.

45



7.Development

Fig. 7.2: Best epoch when training LFCW1A2

The resulting weights will be stored at mnist-1w-2a.npz in the training folder. Running mnist-gen

-weights-W1A2.py will convert the weights to a format usable by both the hardware and software
implementations of the BNN-PYNQ project by converting the floating values into binary values and
packaging them into .bin files. It will also create the classes.txt file and the hardware configuration
header file config.h. The results are located at the newly created lfcW1A2 folder.

PYNQ Configuration

This is the last step: installing the BNN project in the PYNQ device and copying the results of
the previous steps. As described in the README file of the BNN-PYNQ repository, installing the
BNN library is as simple as running sudo pip3 install git+https://github.com/Xilinx/BNN-PYNQ.git.

The contents of the generated lfcW1A2 directory must be copied to a specific folder in the PYNQ
device, in this case the Ultra96. The directory is the parameter folder in the BNN installa-
tion path, likely to be /usr/local/lib/python3.6/dist-packages/bnn/. The arbirary parameter name
is “face recognition”, thus the folder where the weights and configuration files are copied to in
the Ultra96 is /usr/local/lib/python3.6/dist-packages/bnn/params/face_recognition/. This folder will
contain another two folders when the two models are trained: lfcW1A1 and lfcW1A2.

7.2.2 LFC Usage

Once a face is captured in an image and stored in a 28x28 numpy array, the only pre-processing
left is giving it the appropriate format to be used by the MNIST classifier. An example of how to
do this is provided in the LFC-BNN_MNIST_Webcam Jupyter Notebook included in the BNN repository.
An example of how to use the trained model with a frame from a webcam is provided in listing 7.4.
The example uses take_picture() and pre_process() as functions that capture a frame and convert
it to MNIST format, respectively. The output variable is class_out, which contains the index of
the identified person, e.g. if the identified person is the one whose pictures were in the folder “0”
in the training step, class_out will have a value of 0. A full, working example is provided in the
notebooks repository [31].

1 import bnn
2

46



PROYECTO FIN DE GRADO

3 # the parameters where named " faces " in the PYNQ Configuration section
4 hw_classifier = bnn. LfcClassifier (bnn. NETWORK_LFCW1A2 , " faces ", bnn. RUNTIME_HW )
5
6 face = take_picture () # capture a frame from the camera
7 face = pre_process (face) # image -> numpy array -> MNIST format
8
9 class_out = hw_classifier . classify_mnist (face)

Listing 7.4: ”BNN LFC usage example”

It is worth taking a look at the source code [16] of the bnn Python package to better understand
the process, located in the file bnn.py at the top-level package. When bnn.LfcClassifier() is called,
a Python object of class LfcClassifier is created. The constructor of this class configures many
of the classifier parameters and calls another constructor for one of its attributes of type PynqBNN.
The constructor for this class, shown in listing 7.5, locates the bitstream to be downloaded into
the PL and downloads it in line 91. In line 97, the interface attribute is loaded. This attribute
is used to communicate with the PL, including launching the inference function used to classify
an image. The communication functions are, however, in a shared library (.so, in the directory
bnn/libraries/ultra96) and can’t be directly accessed from Python. This is why in line 96, the C
Foreign Function Interface (CFFI) library is used to open the shared library with the _ffi variable.
This variable is an object from the CFFI package and knows what functions to expect from the
shared library, as earlier in bnn.py the headers of the functions to be used have been passed to it,
including the inference and load_parameters functions that will be named again later.

84 def __init__ (self , runtime , network , load_overlay =True):
85 self. bitstream_name = None
86 if runtime == RUNTIME_HW :
87 self. bitstream_name ="{0} -{1}. bit". format (network , PLATFORM )
88 self. bitstream_path =os.path.join( BNN_BIT_DIR , self. bitstream_name )
89 if PL. bitfile_name != self. bitstream_path :
90 if load_overlay :
91 Overlay (self. bitstream_path ). download ()
92 else :
93 raise RuntimeError (" Incorrect Overlay loaded ")
94 dllname = "{0} -{1} -{2}. so". format (runtime , network , PLATFORM )
95 if dllname not in _libraries :
96 _libraries [ dllname ] = _ffi. dlopen (os.path.join( BNN_LIB_DIR , dllname ))
97 self. interface = _libraries [ dllname ]
98 self. num_classes = 0

Listing 7.5: ”PynqBNN constructor”

After the PynqBNN constructor is called and the overlay downloaded, the LfcClassifier will configure
the network with the aforementioned load_parameter function to create the network that will be
used for facial recognition. The next function to analyze is classify_mnist, which is a method of the
LfcClassifier class. This function will create the variables required to call the inference function
located at the shared library, call it, print how much time inference has taken and return the
results: the image classification.

47



7.Development

7.2.3 CNV Setup

The CNV training process is a modification of the GTSRB training process used in the original
repository. GTSRB is a dataset of German traffic signs, and the documentation provides steps
on how to train the model given the dataset. Thus, rather than creating a new script to train
the model, the dataset will be replaced by a modified version of the Yale Faces dataset and the
training script will be modified to fit the new dataset.

Data formatting

The GTSRB dataset has a structure like the one shown in figure 7.3, with numerated folders
containing a CSV file and a set of PPM files. The CSV files contain information about the PPM
images in the folder. The CSV columns are separated by semicolons and contain a line per PPM
file with the name of the file, the coordinates of the traffic sign in the image and the class the
image belongs to. Scripts for creating the correct dataset are all provided in a repository created
for this project and hosted on GitHub [32]. The scripts convert the image from .gif to .ppm, use a
classifier included in OpenCV to extract the coordinates of the faces on the image, create the CSV
files and put it all together.

Fig. 7.3: GTSRB modified dataset directory structure

Model creation and training

Only two things need to be changed in the training file gtsrb.py. The first one is the variable num_dup,
which improves the original GTSRB training process by grouping duplicates. Yale Faces contains
no duplicates and therefore the value must be changed from 30 to 1. The second modification is
disabling the GTSRB junk files that would worsen the model of this project. Setting the variable
junk_class to False does the trick. The training script is now ready to be run as shown in listing
7.6.

1 python2 .7 gtsrb .py -ip $PATH_TO_DATASET

Listing 7.6: ”Training of CNV”

The process took five hours, considerably longer than the LFC topologies. Running the gtsrb-gen-

binary-weights.py converts and packs before storing them in the newly created folder cnvW1A1-gtrsb

the weights so they can be used on PYNQ. The best epoch out of 1000 is shown in figure 7.4.

48



PROYECTO FIN DE GRADO

Fig. 7.4: Best epoch when training CNVW1A1

PYNQ Configuration

Similar to the LFC section, a folder was generated and needs to be installed on the board. For that,
the generated cnvW1A1-gtrsb folder is copied from the personal computer to the board, specifically to
the folder /usr/local/lib/python3.6/dist-packages/bnn/params/facial_recognition/cnvW1A1. As the path
indicates, the folder is also renamed from cnvW1A1-gtrsb to cnvW1A1. The facial_recognition folder
should now contain all three models.

7.2.4 CNV Usage

The usage of the CNV classifier is very similar to the one of the LFC classifier. The classifier is
loaded by specifying the paramters and topology, a pre-processing function is run on the input
image to prepare it for the classifier, and the image is run through the classifier resulting in the
index of the detected class. The PYNQ notebooks [31] published with the results of the projects
provide more insight into the whole process, but doing so in this section would fill it with code
which is not appropriate. Once again, the parameter name is “facial recognition”. There is a
notable difference when compared to LFC: the classifier takes an array of images as input and
returns an array of classes as output. The example of 7.7 feeds the classifier a single image and
takes the first value of the output.

1 import bnn
2
3 hw_classifier = bnn. CnvClassifier (bnn. NETWORK_CNVW1A1 , " facial_recognition ", bnn.

RUNTIME_HW )
4
5 face = take_picture () # capture a frame from the camera
6 face = pre_process (face) # image -> GTSRB format
7
8 class_out = hw_classifier . classify_image (face)

Listing 7.7: ”BNN usage example”

The classifier construction and method are very similar to the ones of the LFC topology, excluding
a few differences. The classifier class is CnvClassifier instead of LfcClassifier, the class has more
classification methods for different purposes and the method used in listing 7.7 contains an image

49



7.Development

formatting function, therefore the image does not need to have the exact format used by the
classifier like in LFC.

7.3 Object Detection

The QNN-MO-PYNQ [19] provides an accelerated implementation for YOLO and is simpler than
facial recognition in some ways due to the lack of necessity to train a new model. It is, however,
more complicated to use. The following sections go through the set-up and usage processes in some
detail.

7.3.1 Setup

The only step required to install the QNN library in the Ultra96 board is to run sudo pip3 install

git+https://github.com/mikelsr/QNN-MO-PYNQ.git. It is a fork of the QNN-MO-PYNQ [19], the only
modification being replacing the Darknet dependency of the original project with a custom one,
as explained in the following section.

Darknet

The QNN-MO-PYNQ repository has a version of Darknet [33] modified by Giulio Gambardella
from the Xilinx team [34] as a dependency. This modified version adds the C function named
“forward region layer pointer nolayer” and the corresponding Python binding. It is however based
on an older, less convenient version of Darknet, so another version was made to integrate the
changes made by the Xilinx team to the current version.

Darknet Python Bindings

As previously explained, Python bindings allow calling code generated in other programming lan-
guages to be called directly from Python. There are multiple ways of using Python bindings, the
two methods used in this library are ctypes and dynamic libraries. The examples that follow are
from the python/darknet.py file in the custom fork of the Darknet repository. It is the file that is
imported when importing darknet from Python.

Ctypes is a Python module that provides data structures compatible with those of the C program-
ming language. The example provided in listing 7.8 shows the Python equivalent of a C structure
with four variables of type float.

20 class BOX( ctypes . Structure ):
21 _fields_ = [("x", ctypes . c_float ),
22 ("y", ctypes . c_float ),
23 ("w", ctypes . c_float ),
24 ("h", ctypes . c_float )]

Listing 7.8: ”Ctypes example from darknet.py”

50



PROYECTO FIN DE GRADO

Dynamic libraries, in this case in the form of shared object (.so) files due to PYNQ being a Linux
system, reference C structures and functions and allow them to be referenced directly from Python
without explicit bindings.

When building the custom darknet project in the Ultra96 with the Makefile the libdarknet.so shared
objects file is generated. When importing Darknet from Python, the code in python/darknet.py is
executed as mentioned before. The line shown in listing 7.9 shows how the dynamic library is
loaded into the lib Python variable.

48 lib = CDLL("/opt/ darknet / libdarknet .so", RTLD_GLOBAL )

Listing 7.9: ”Python dynamic library import in darknet.py”

Explicit bindings are, however, the preferred way of creating bindings. The code sample in listing
7.10 shows how a C function imported when loading the dynamic library is assigned to a Python
variable and the input/output parameter types are defined in the argtypes and restype attributes,
respectively. It is important to note that Python objects are callable, and functions are imple-
mented as objects. This results in callable objects having attributes, thus the attributes of the
callable object get_network_boxes from listing 7.10.

65 get_network_boxes = lib. get_network_boxes
66 get_network_boxes . argtypes = [c_void_p , c_int , c_int , c_float , c_float , POINTER (

c_int ), c_int , POINTER ( c_int )]
67 get_network_boxes . restype = POINTER ( DETECTION )

Listing 7.10: ”Function definition example from darknet.py”

7.3.2 Usage

The algorithm requires two configuration parameters: the detection and hierarchy thresholds.
The first threshold, QNN_THRESHOLD, is used to decide whether a box contains an object. If the
certainty is above the threshold, an object is considered to be in the box. The second threshold,
QNN_THRESHOLD_HIER, determines whether an object is considered to belong to a class. Again, if the
certainty surpasses the threshold, the class is accepted. Additional parameters, such as the path
to the QNN and Darknet libraries and the size of the inputted to the network, are shown in listing
7.11.

The path to the Darknet module must be explicitly declared as the module is not in the Python
path, as shown in line 17 of listing 7.12.

1 # Python module configuration
2 DARKNET_PATH = "/opt/ darknet "
3 QNN_PATH = f"/usr/ local /lib/ python3 .6}/ dist - packages /qnn"
4
5 # Classifier configurations
6 QNN_SIZE = 416 # width and height of images used by YoloV2
7 QNN_THRESHOLD = 0.3 # certainty that there is an object in a box
8 # lower -> more results
9 QNN_THRESHOLD_HIER = 0.5 # threshold to consider a class in a box

Listing 7.11: ”QNN global variables”

51



7.Development

12 import qnn
13 from qnn import TinierYolo , utils
14
15 # ... other imports
16
17 sys.path. append (f"{ DARKNET_PATH }/ python ")
18 import darknet

Listing 7.12: ”QNN imports”

To create the classifier, the imported TinierYolo class must be instantiated. The instantiating
method loads the libraries that will be used when using the hardware accelerator, although the
SW implementation can also be loaded by changing the runtime parameter of the constructor.
To download the corresponding bitstream into the FPGA, the TinierYolo.init_accelerator method
must be called. As seen in listing 7.13, which is taken from the source code of the QNN library,
the path to the bitsream has a default value and is not required. The functions initParameters and
initAccelerator have also been imported from a shared library using CFFI as in the LFC example
but this time under the lib attribute instead of interface. The source files that contain listings
7.13, 7.14, 7.15, 7.16, 7.17, 7.18 can be found in the QNN-MO-PYNQ repository [19].

97 def init_accelerator (self , bit_file = TINIER_YOLO_BIT_FILE , json_network =
W1A3_JSON , json_layer = JSON_TINIER_YOLO ):

98 """ Initialize accelerator memory and configuration . """
99

100 if bit_file :
101 ol = Overlay ( bit_file )
102 ol. download ()
103 ...
104 self.lib. initParameters (1 ,0);
105 self.lib. initAccelerator ( json_network . encode () , json_layer . encode ())

Listing 7.13: ”Partial method of TinierYolo class”

The network is still to be loaded after downloading the overlay. This is done by calling the TinierYolo

.load_network passing the path to the network architecture description file as a parameter. The file
is shown in listing 7.14, is in JSON format and contains both network parameters and descriptors
for each layer of the network. The relevant descriptors for this project are the input size, output
size and layer names.

1 {
2 " network ": "tinier -yolo",
3 " input_image ": " ../../ tests / Test_image /tinier -yolo/ input .bin",
4 ... ,
5 " layers ": [{
6 "name": " conv1 ",
7 "func": " conv_layer ",
8 " input_bits ": 3,
9 " output_bits ": 3,

10 " weight_bits ": 1,
11 " threshold_bits ": 16,
12 " kernel_shape ": 3,
13 " kernel_stride ": 1,
14 " input_channels ": 16,

52



PROYECTO FIN DE GRADO

15 " input ": [16 , 208 , 208] ,
16 " output_channels ": 64,
17 " output ": [64 , 208 , 208] ,
18 " padding ": 1
19 },
20 ...
21 }
22 }

Listing 7.14: ”Network architecture”

Additionally, computations made with Darknet require the library to have the correct network
configuration. The parse_network_cfg function takes the path to a configuration file as a parameter
and sets the network values based on the configuration file. An edited example of the network
creation, configuration and overlay download is shown in listing 7.15.

1 classifier = TinierYolo ()
2 classifier . init_accelerator ()
3 net = classifier . load_network ( json_layer =f"{ QNN_PATH }/ params /tinier -yolo - layers .

json")
4
5 conv0_weights = np.load(f"{ QNN_PATH }/ params /tinier -yolo -conv0 -W.npy", ...)
6 conv0_weights_correct = np. transpose ( conv0_weights , axes =(3 , 2, 1, 0))
7 conv8_weights = np.load(f"{ QNN_PATH }/ params /tinier -yolo -conv8 -W.npy", ...)
8 conv8_weights_correct = np. transpose ( conv8_weights , axes =(3 , 2, 1, 0))
9

10 # ... further configuration and data type conversions
11
12 net_darknet = darknet .lib. parse_network_cfg ( conf_file )

Listing 7.15: Network creation and configuration”

Each frame to be processed requires to be in the format used by Darknet, as shown in the example
Jupyter Notebook. After the image is correctly formatted, it must be run through the first layer.
As explained in section 6.5.3, the first and last layers are not HW accelerated. The first layer
execution is shown in listing 7.16.

1 conv0_ouput = utils . conv_layer (img , conv0_weights_correct ,
2 b= conv0_bias_broadcast ,
3 stride =2, padding =1)
4 conv0_output_quant = conv0_ouput .clip (0.0 , 4.0)
5 conv0_output_quant = utils . quantize ( conv0_output_quant /4, 3)

Listing 7.16: ”First QNN layer”

Middle layers are run as shown in listing 7.17, which is explained in this paragraph. The function
get_accel_buffer prepares a buffer for the inference to dump the results at. Next, prepare_buffer

runs a series of operations over the input data to prepare it. Finally, inference loads the input
data into the accelerator so that postprocess_buffer can read the output and perform a series of
operations to convert it back to the original format. Inside the inference function shown in the
listing, the function singleInference function is called. This function, as well as the aforementioned
initParameters, initAccelerator and another function that will be mentioned later but is called
deinitAccelerator were all imported using CFFI.

53



7.Development

1 out_ch = net[’conv7 ’][ ’output ’][0]
2 out_dim = net[’conv7 ’][ ’output ’][1]
3
4 conv_output = classifier . get_accel_buffer (out_ch , out_dim )
5 conv_input = classifier . prepare_buffer ( conv0_output_quant *7);
6
7 classifier . inference ( conv_input , conv_output )
8
9 conv7_out = classifier . postprocess_buffer ( conv_output )

Listing 7.17: ”Middle QNN layers”

The final steps of the QNN, shown in listing 7.18 show how the output of the middle layers is
processed and run through the last layer. The results are now stored in the net_darknet created in
listing 7.15.

1 conv7_out_reshaped = conv7_out . reshape (out_dim , out_dim , out_ch )
2 conv7_out_swapped = np. swapaxes ( conv7_out_reshaped , 0, 1) # exp 1
3 conv7_out_swapped = conv7_out_swapped [np.newaxis , :, :, :]
4
5 conv8_output = utils . conv_layer ( conv7_out_swapped , conv8_weights_correct ,
6 b= conv8_bias_broadcast , stride =1)
7 conv8_out = conv8_output . ctypes . data_as ( ctypes . POINTER ( ctypes . c_float ))
8
9 darknet .lib. forward_region_layer_pointer_nolayer ( net_darknet , conv8_out )

Listing 7.18: ”Middle QNN layers post-processing”

The only thing left is processing the results. There are two useful functions included in Darknet
to extract and sort the results. The process is straightforward: extract the detections from the
result, sort them based on the probability of having found something and look for people on the
detections that came out on top. The process is shown in listing 7.19 in a simplified way, but
the whole process is available at the “Detection” Jupyter Notebook at [31]. In the example, meta

contains the classes of the classifier and the names of the classes, e.g. 0 is a class and “person” is
a name.

1 num = ctypes . c_int (0)
2 num_pointer = ctypes . pointer (num)
3
4 detections = darknet . get_network_boxes ( net_darknet , QNN_SIZE , QNN_SIZE ,
5 QNN_THRESHOLD , QNN_THRESHOLD_HIER ,
6 None , 0, num_pointer )
7 n = num_pointer [0]
8
9 darknet . do_nms_sort ( detections , n, meta.classes , QNN_THRESHOLD )

10
11 results = []
12 for i in range (n):
13 for j in range (meta. classes ):
14 if detections [i]. prob[j] > 0.0 and meta. names [j] == b" person ":
15 results . append ((
16 meta. names [j],
17 detections [i]. prob[j],
18 ( get_box_coords ( detections [i]. bbox))

54



PROYECTO FIN DE GRADO

19 ))

Listing 7.19: ”Extraction of results from QNN”

The variable results now contains the probability and bounding box of each person in the processes
image. It is important to take into account that memory was allocated with the bindings and is not
automatically cleaned up by the Python garbage collector, thus darknet.free_detections(detections,

n) must be called to manually release allocated memory. Unless more images are to be processed,
the accelerator can be unloaded by running classifier.deinit_accelerator().

7.4 Integration of Facial Recognition and Object Detection

This section goes through the attempt to use one of the facial recognition (BNN) overlays and
object detection (QNN) overlays at the same time. The first thing that comes to mind is to just
download both overlays, unfortunately, that is not possible as only one overlay can be downloaded
at a time. The next idea is to just download them alternatively before using them. The benchmark
notebooks [31] created for documenting this project show however that loading the overlay takes
somewhere around 500 and 1000 milliseconds. Downloading the overlays interchangeably would
be possible, but would harm the real-time potential as the download times would need to be
compensated by processing images by batches instead of individually. The solution attempted in
this project was to reconstruct the Vivado projects of both networks, integrate them in a single
design and create an overlay from the integrated design. Both BNN-PYNQ and QNN-MO-PYNQ
provide ways of generating Vivado projects from the sources included in the repositories. For the
sake of simplicity, this section will refer to the BNN and QNN interchangeably repositories simply
as repository. Both projects are reconstructed very similarly and thus only when reconstruction
steps differ will the repository be specified.

The first step is to install Vivado and Vivado HLS. The networks were built using Vivado 2018.2
and that is the version that needs to be used for reconstruction to avoid compatibility errors. Once
Vivado and HLS are installed, a script inside repository/src/network allows reconstruction of the
projects. The make-hw.sh shell script receives the network type, target board and reconstruction
mode as parameters and builds the project in a new folder at repository/src/network/output. The
process takes a considerable amount of time to complete. The BNN used in this case is rebuilt
with ./make-hw.sh lfcW1A1 ultra96 a: the network type is “lfcW1A1”, the target board is “ultra96”
and “a” specifies to regenerate HLS and bitstream files. The Other BNN and QNN projects are
reconstructed in the same way considering the three other network types used in this project are
CNVW1A1, LFCW1A2 and W1A3. Once the project is rebuilt, four folders are found in the
output folder:

• bitstream. Generated bitstreams are stored in this folder.

• hls-syn. The IP, source C/C++ files of the HLS synthesis and the VHDL and Verilog files
generated as a result are stored in this filder.

55



7.Development

• report. The Vivado and Vivado HLS reports are stored in this folder. The Vivado report
contains the estimated FPGA utilization values.

• vivado. The vivado project is created on this folder. The .xpr file can be opened with Vivado
to inspect and edit the designs.

After generating both projects, a new one is created to integrate the BNN and QNN IPs. While
creating a project, “RTL” must be selected as the project type and “Ultra96” as the target board.
Figure 7.5 shows the project confirmation window with the correct parameters.

Fig. 7.5: Last step before creating the Vivado project

Once created, the IPs from the BNN and QNN repositories must be imported with the “Add
Sources” option. The IPs that need to be imported are named “BlackBoxJam” and located in
repository/src/network/output/hls-syn/NETWORK-ultra96/sol1/impl/ip, where NETWORK is the type of net-
work: W1A3, lfcW1A1, lfcW1A2 or cnvW1A1. A problem arises when importing the IPs: they
overlap each other. To solve this, one of the IPs can be edited so its name changes from xilinx.

org:hls:BlackboxJam to a custom one, in this case the BNN BlackBoxJam was edited to be custom.

org:hls:BlackBoxJamBNN. Now, with both IPs imported the design can be created. Creating a block
diagram and adding the Zynq UltraScale+ module is the first step to integrate the components
in the design. Appendix A contains the block diagrams of BNN, QNN and the integration that
can help follow this section. The Zynq module has two slave and two master AXI interfaces for
the QNN IP and, one slave and one master AXI interface for the BNN one, as can be seen in the
appendix. Next, an AXI Interconnect module should be loaded, this time with three slave AXI
interfaces and two master ones. Now the BlackBoxJam IPs can be loaded and connected with the
Zynq module via AXI SmartConnect modules. The few missing AXI connections that connect the
Zynq, AXI Interconnect and BlackBoxJam modules are shown in the appendix. Vivado has an
“auto-connect” feature that creates the missing connections, resulting finally in the design shown
in the last block diagram of the appendix. The design needs to be validated, synthesized and finally
implemented. The first two steps run without errors, however when implementing the design an
error raises stating the design doesn’t fit the board. This while predictable as each of the overlays
take more than half of the capacity, was the stopping point for the implementation. Efforts were

56



PROYECTO FIN DE GRADO

made to compress it by changing parameters in the steps previous to the implementation, but
without much success. A question was posted to the PYNQ forum and quickly answered, however
the problem remained unresolved. This was unfortunately the end of the integration phase, as any
alternatives that came up seemed to require a deeper understanding of the components and were
not in the project scope. It is, however, discussed in the future work section (section 9.1).

7.5 Forked Projects

This section lists the modifications made to some projects used during development. They were
all originally hosted on GitHub and have been forked to make modifications available to anyone.
Changes were usually made in separate branches but have been merged to master for accessibility.
This section is oriented not only to document the development process but also to keep future
developers from investing time solving the issues presented during the development of the project.

Pylearn 2

Pylearn2 is a machine learning library used to train the models used for this project. Pylearn 2
has six as a dependency. The original, currently unmaintained project uses the version included in
Theano (from theano.compat.six import ...) which raised errors during the model training phase and
needed to be fixed. The solution was to fork the repository and replace those imports with the global
installation of six (from six import ...). This uses the six module installed in the system instead
of the one packed with Theano. The pylearn2/datasets/mnist.py file has assertions that need to be
adjusted to the size of the datasets for the process to succeed. Finally, the output size was changed
from 10 bits to 15 bits. The repository is hosted at https://github.com/mikelsr/pylearn2.

Darknet

Darknet is a neural network framework written in C and Cuda used by the QNN-MO-PYNQ
repository for processing images. The version used by QNN-MO-PYNQ is a fork [34] or the
original [33] that implements some functions required by QNN-MO-PYNQ. The fork is however
lacking some features that are implemented in the original and are useful for processing the results.
A new fork [35] of the original repository was created, the new functions and bindings from the
fork included in QNN-MO-PYNQ were added, and new function was added to the Python bindings
file to classify an image without sorting the results. This last function is used for the benchmarks
shown in chapter 8. The repository needs to be rebuilt in the board after changing the sources so
that the file libdarknet.so, required by the project, is updated. The forked repository is available
at https://github.com/mikelsr/darknet.

57

https://github.com/mikelsr/pylearn2
https://github.com/mikelsr/darknet


7.Development

BNN-PYNQ

The BNN-PYNQ repository is very relevant to this project, but the most modified parts are the
model training scripts. The first modification was made to mnist.py so that the size of training,
validation and test sets corresponded to the new dataset and the output was a 15-bit value instead
of a 10-bit one. The second modified file was gtsrb.py. Some statements were added to show
more information about the state of the program to better understand how the training should be
done. In addition to that, dataset sizes were adjusted, the GTSRB junk files were disabled, some
data-transforming statements were modified to fit the new dataset and the classification classes
were updated.

After several iterations, the models were trained and resulting classes, header files and binary values
were copied to the params directory so that the networks trained for this project are available to use
in the Ultra96 just by cloning the repository found at https://github.com/mikelsr/BNN-PYNQ.

QNN-MO-PYNQ

QNN-MO-PYNQ is also one of the vital repositories for this project. The project setup file was
modified so that the custom version of Darknet is installed when setting up the project instead of
the Xilinx fork. This means the correct version of Darknet is automatically installed when installing
the fork of QNN-MO-PYNQ, accessible at https://github.com/mikelsr/QNN-MO-PYNQ.

JPG-PNG-to-MNIST-NN-Format

This repository contains the scripts used to transform the PNG dataset to the same format as
MNIST, which is the one expected by the training script. It was adapted for GNU/Linux systems
as it was originally written for OS X and the size and color model of the images were changed
to the ones used in BNN-PYNQ. The repository is available at https://github.com/mikelsr/

JPG-PNG-to-MNIST-NN-Format.

Yale-To-GTSRB

Yale-To-GTSRB is a repository created for this project that contains scripts that convert the Yale
Faces database to the format used by the GTSRB. It can be found at https://github.com/

mikelsr/yate-to-gtsrb and contains four scripts:

• genppm.sh - Shell script that converts the original .gif images to .ppm files and organizes
them in the same structure GTSRB images have.

• create dataset.py - Python script that locates the faces of each image using a cascade
classifier and creates a CSV file for each face containing a list of image names, dimensions,
face coordinates and the classification. It can be configured so that the image size is set to

58

https://github.com/mikelsr/BNN-PYNQ
https://github.com/mikelsr/QNN-MO-PYNQ
https://github.com/mikelsr/JPG-PNG-to-MNIST-NN-Format
https://github.com/mikelsr/JPG-PNG-to-MNIST-NN-Format
https://github.com/mikelsr/yate-to-gtsrb
https://github.com/mikelsr/yate-to-gtsrb


PROYECTO FIN DE GRADO

a specific value and the face coordinates are scaled to the new image size, which affects the
CSV files but not the images.

• resize.sh - Shell script that resizes the dataset images to have specific values. This step is
optional and should only be run if create_dataset.py has been given specific values.

• run.sh - Shell script that runs the previous scripts in sequential order.

59





PROYECTO FIN DE GRADO

Chapter 8

Results

The results of the project will be analyzed by benchmarking the accelerated versions of the applica-
tions and their pure-software implementations, as the goal of the project is to examine the PYNQ
framework as an edge computing device. These devices usually have ARM processors similar to
the one the Ultra96 has, therefore the results of the pure-software implementations will be similar
to the ones of some edge computing devices. Even if those devices were equipped with better pro-
cessors, the benchmarks below will show that the accelerated sections of the programs would still
be far ahead. The benchmarks are available at the GitLab repository [31] containing the Jupyter
Notebooks with examples of how to use the facial recognition and object detection tools.

The first benchmark compares each of the BNN topologies (LFCW1A1, LFCW1A2 and CNVW1A1)
in their accelerated and non-accelerated versions. A random image from the Yale Faces dataset
is loaded and run through the HW and SW versions of the classifier 100 times. The time is mea-
sured by subtracting the time right before the classification function is called to the time right
before the classifier finishes. Measured times are stored in arrays so that averages, maximum and
minimum values can be calculated. Figure 8.1 shows the results in the form of execution time and
frames per second by comparing each of the topologies, while figure 8.2 compares the HW and SW
implementations.

As expected, CNV networks take longer than LFC networks. It does however come as a surprise
that LFCW1A2 networks are faster then LFCW1A1 networks in the accelerated versions but not
in the software ones. The models were retrained, the program was checked several times for errors
and more iterations were measured, but the results were the same every time and the benchmarks
will therefore be accepted for this project. The results are comparable to the benchmarks that
PYNQ-CV [24] made with the xfOpenCV implementation, reinforcing the stated point.

It can be appreciated that the execution times decreased one or several orders of magnitude in all
cases. The execution of CNVW1A1 is feasible to process several frames per second in real-time,
while the software-only implementation can only process about two frames per second. The LFC
networks have trivialized classification to a point that went from being a potential bottleneck to
being one of the least time-consuming segments of the program.

61



8.Results

Fig. 8.1: Execution times of each BNN topology

Fig. 8.2: Alternative view of the execution times of each BNN topology

Object detection also shows some very interesting results, although it should be noted that Darknet
was used to run the SW tests as the software implementation was not available, perhaps due to
an error on the corresponding shared library. Replacing the library did not, however, still resulted
in the classifier not working. The Darknet network was loaded from the values used for the QNN-
MO-PYNQ project, and only the performance of the classification function was measured. The
Darknet fork [35] contains the benchmarked function, named classify_nosort and found in the
Python bindings file. It is a modified version of the classify function that skips the sorting of
results. Darknet is also implemented in C and is used in QNN-MO-PYNQ in both accelerated and
non-accelerated versions. Running the Darknet binary, which takes additional steps such as loading
the network configuration, took significantly longer than the classification-only measurement, thus
the major factors that would contaminate the benchmark results have been discarded.

The time, once again, is measured right before and right after running the classification functions
of both HW and SW implementations. Figure 8.3 shows the results in execution times and frames
per second. The accelerated version still processes the first and last layers of the network with
a SW implementation, which as shown in figure 8.4 takes about twice the time to run than the
pure-hardware section. This means the project has still a lot of room for performance improvement
by accelerating the first and last layer.

The classification that takes an average of over eight seconds to run in the software implementation
takes about a third of a second in the accelerated version including the first and last layers, but just
100 milliseconds if only the middle layers are examined. This means that even with the bottleneck
of the software layers, several frames per second can be processed, making it capable of real-time
applications.

62



PROYECTO FIN DE GRADO

Fig. 8.3: Comparison of HW+SW and SW QNN execution times

Fig. 8.4: Comparison of border (SW) and middle (HW) layers

While these benchmarks evaluate the bottlenecks of the applications, there is still room for perfor-
mance improvements by developing new applications for PYNQ and by optimizing the ones that
should be performed by the PS. There is also some time consumed loading the overlays, but that
action has to be performed only once at the start of the program and is very well worth the half
a second it takes.

This project has also produced some documentation resources. Jupyter Notebooks, mentioned at
the beginning of the chapter and shown in figure 8.5 have been created showing the usage of the
overlays and documenting the benchmarking methods and results. They may serve as the starting
point for future projects based on this one, as they document the Python code used in each of
the applications while using PYNQ and the libraries described in section 9.1. They might save
time for future researchers as many of the problems encountered during development are already
solved on the notebooks. The repository has been given a BSD-3 license, the same license PYNQ
and other related projects have. The reader is encouraged to take a look at the notebooks, as
they provide more insight into the results when combined with this document. They are accessible
either with the citation or at the following link: https://gitlab.com/mikelsr/pynq. A recording
of the live execution of each notebook is available at the following Google Drive link: https:

//drive.google.com/drive/folders/1zM5ILol_jCNjf--qIyyCRUW2r89IW1On?usp=sharing.

All the modified code libraries are publicly available in the web pages provided in section 7.5. In
addition, the BNN-PYNQ library now includes the bitstreams to use the models trained in this
project and the QNN-PYNQ-MO has been modified to install the custom version of Darknet. Both
can be installed on an Ultra96 board running PYNQ with the Python package manager. Listing
8.1 shows how to install both of them.

1 sudo pip3 install git+ https :// github .com/ mikelsr /BNN -PYNQ.git
2 sudo pip3 install git+ https :// github .com/ mikelsr /QNN -MO -PYNQ.git

63

https://gitlab.com/mikelsr/pynq
https://drive.google.com/drive/folders/1zM5ILol_jCNjf--qIyyCRUW2r89IW1On?usp=sharing
https://drive.google.com/drive/folders/1zM5ILol_jCNjf--qIyyCRUW2r89IW1On?usp=sharing


8.Results

Listing 8.1: ”BNN and QNN fork installation command”

Finally, although the project was successful in proving PYNQ has a lot of potential to transform
edge computing by testing two applications, the implementation of both into a single overlay was
achieved. This is not to say it is not possible; it is and it will be proposed as future work but it
would have provided some interesting results and a very complete application ready to deploy on
a real scenario.

Fig. 8.5: GitLab repository containing the Jupyter Notebooks

64



PROYECTO FIN DE GRADO

Chapter 9

Conclusions

The Zynq architecture and PYNQ framework have proven to be the enablers of the adoption
of new edge-computing applications on low-power devices. The heterogeneous dual processor
architecture of Zynq allows performing paralellizable tasks much faster with considerable resource
usage reductions. Having a PS-oriented system allows the development of software to be PS focused
and using the PL in a way comparable to calling a software library, thanks to the overlay design.
PYNQ has also proven to be able to provide developers the means to use FPGA accelerated software
libraries without requiring deep understanding of FPGAs. Using well documented, existing overlays
was easier than expected and quickly showed results that proved PYNQ was worth evaluating.

The success of PYNQ may imply a shift in edge-computing application design paradigms that
favors local processing done by edge-computing devices such as the Ultra96-v1 MPSoC studied in
this project in contrast to the traditional centralized processing. Their open approach favoring
community projects, free software and publicly available research might add to the potential of
PYNQ, resulting in an even greater impact. It is also noticeable that Xilinx staff have made
an effort to document the provided tools, and despite having room for improvement this effort
is greatly appreciated and has made this project fairly reasonable. Documentation in form of
interactive Jupyter Notebooks make it easier to get familiarized with the platform and try new
ideas. This is why the steps to reproduce the results of the project have been made available in the
form of Jupyter Notebooks. The community is also active and will, in many cases, be of invaluable
help.

Both of the use cases: facial recognition and object detection, experienced performance improve-
ments of one or several orders of magnitude in their classification stages. The utility of heteroge-
neous MPSoC devices has been proved, as even in the case that experienced the least improvement,
performance was improved by 1100% in the classification stages. This means, however, that there is
work to be done to optimize the rest of the programs either by taking advantage of the uniqueness
of the Zynq architecture or by optimizing the functions that can’t be accelerated.

Hopefully, the success of the current use cases will inspire more people to create new applications
for PYNQ. As seen in chapter 8, both applications are now feasible in real-time, although there is
a noticeable difference between the capacity of facial recognition and object detection, the former

65



9.Conclusions

being much faster than the latter. The latter can still process multiple frames per second, thus
proving PYNQ has the potential to bring many intensive applications to edge computing. The
attempt at implementing both functionalities into a single framework, while unsuccessful, seems
to be on the correct path and might have been taken further with more resources, time or with
another Zynq UltraScale+ device with more resources. Zynq devices will most surely evolve over
time, and the integration will become easier when hardware advancements converge with the wider
range of applications and documentation being developed.

In summary, the Zynq UltraScale+ architecture provides relatively low-energy edge computing
devices unprecedented performance capacity and the PYNQ framework makes that capacity ac-
cessible not only to PL experts but to many other developers and engineers with a more shallow
understanding of the topic. The PS-oriented design gives it flexibility and familiarity that will
benefit both developers and the architecture itself.

9.1 Future Work

The failed attempt at integrating two overlays has left an itch for investigating the subject deeper
until a solution is found. Given time, resources, and help from the PYNQ community it seems
like an achievable goal worth following. The issue can surely be approached from many angles and
there are likely different solutions that, while having little to do with each other, all provide more
insight into what is currently possible with PYNQ. The simple solution based on the information
available seems to be to obtain a PYNQ board with more capacity or find a way of optimizing the
size of the design.

It would also be interesting to compare the applications of this project to other low-consumption
edge computing devices. These devices could range from widely extended, cheaper Raspberry Pi
to more complex, specialized, and more expensive ones such as the NVIDIA Jetson which has a
high-end GPU and is specially build to AI applications such as the ones examined in this project.
Comparing them would provide interesting data that could be used to decide what device should
be used to solve each problem that may arise in edge computing.

As mentioned previously, now that the classifier has been accelerated the applications will have new
bottlenecks. Iteratively accelerating or optimizing the bottlenecks could increase the performance
of the programs to the point of being able to process more than one video stream in real-time.
This is, however, more far fetched than integrating overlays and benchmarking more devices and
is only proposed as a line of work to fully optimize an application for PYNQ.

Lastly, there is a very wide range of applications that could benefit from FPGA acceleration.
Finding new use cases and either trying existing overlays or creating new ones would benefit
PYNQ and be useful for future developers.

66



PROYECTO FIN DE GRADO

9.2 Personal Assessment

Experimenting with PYNQ has been a great closing experience for both Computer Engineering
and Industrial Electronics and Automation Engineering degrees, despite being the final project of
the latter. The project has benefited from many of the competencies developed during the degree,
from higher level data manipulation to analyzing lower level Vivado designs and many more in
between. As a total newcomer to PYNQ, the project involved learning about a topic from scratch
and trying things until being able to achieve the proposed objectives. It has also involved many
ours examining both Python and C code from multiple sources and examining project architectures
and designs. A surprising amount was learned about AI and AI topologies while researching and
developing the project. While challenging, solutions almost always ended up coming for every
problem and it has been a really interesting experience. There is much to learn from PYNQ, it
has ambitious goals and potential to really influence edge computing.

As a closing statement, PYNQ has proven its value and should be closely monitored for future
advancements. The project was interesting from the initial research to the final stages of develop-
ment, it required interdisciplinary knowledge, presented a varied set of problems to solve and has
been an overall great learning experience.

67





PROYECTO FIN DE GRADO

Bibliography

[1] Xilinx. “Zynq UltraScale+ MPSoC Data Sheet:Overview”. https://www.xilinx.com/

support/documentation/data_sheets/ds891-zynq-ultrascale-plus-overview.pdf.
[Online; accessed 08-Jun-2020].

[2] Xilinx. “Zynq UltraScale+ MPSoC - Product Tables and Product Selection
Guide”. https://www.xilinx.com/support/documentation/selection-guides/

zynq-ultrascale-plus-product-selection-guide.pdf. [Online; accessed 08-Jun-2020].

[3] Xilinx. “Zynq Migration Guide”. https://www.xilinx.com/support/documentation/user_

guides/ug1213-zynq-migration-guide.pdf. [Online; accessed 10-Jun-2020].

[4] Xilinx. “Zynq-7000 SoC Data Sheet: Overview”. https://www.xilinx.com/support/

documentation/data_sheets/ds190-Zynq-7000-Overview.pdf. [Online; accessed 08-Jun-
2020].

[5] Xilinx. “PYNQ Homepage”. http://www.pynq.io/. [Online; accessed 10-Jun-2020].

[6] Travis Oliphant (Original author). “NumPy”. https://numpy.org. [Online; accessed 10-Jun-
2020].

[7] Python Software Foundation. “asyncio — Asynchronous I/O”. https://docs.python.org/

3/library/asyncio.html. [Online; accessed 10-Jun-2020].

[8] Xilinx. “PYNQ Hello World”. https://github.com/Xilinx/PYNQ-HelloWorld. [Online;
accessed 17-Jun-2020].

[9] LinuxGizmos. “Ultra96-V2 SBC adds certified WiFi
and industrial temp support”. https://linuxgizmos.com/

ultra96-v2-sbc-adds-certified-wifi-and-industrial-temp-support/. [Online;
accessed 20-Jun-2020].

[10] Avnet. “Ultra96-V1 Single Board Computer Hardware User’s Guide”. https://zedboard.

org/sites/default/files/documentations/Ultra96-HW-User-Guide-rev-1-0-V1_1.

pdf. Version 1.1 [Online; accessed 15-May-2020].

[11] Xilinx. “Introduction to FPGA Design with Vivado High-Level Syn-
thesis”. https://www.xilinx.com/support/documentation/sw_manuals/

ug998-vivado-intro-fpga-design-hls.pdf. [Online; accessed 11-Jun-2020].

69

https://www.xilinx.com/support/documentation/data_sheets/ds891-zynq-ultrascale-plus-overview.pdf
https://www.xilinx.com/support/documentation/data_sheets/ds891-zynq-ultrascale-plus-overview.pdf
https://www.xilinx.com/support/documentation/selection-guides/zynq-ultrascale-plus-product-selection-guide.pdf
https://www.xilinx.com/support/documentation/selection-guides/zynq-ultrascale-plus-product-selection-guide.pdf
https://www.xilinx.com/support/documentation/user_guides/ug1213-zynq-migration-guide.pdf
https://www.xilinx.com/support/documentation/user_guides/ug1213-zynq-migration-guide.pdf
https://www.xilinx.com/support/documentation/data_sheets/ds190-Zynq-7000-Overview.pdf
https://www.xilinx.com/support/documentation/data_sheets/ds190-Zynq-7000-Overview.pdf
http://www.pynq.io/
https://numpy.org
https://docs.python.org/3/library/asyncio.html
https://docs.python.org/3/library/asyncio.html
https://github.com/Xilinx/PYNQ-HelloWorld
https://linuxgizmos.com/ultra96-v2-sbc-adds-certified-wifi-and-industrial-temp-support/
https://linuxgizmos.com/ultra96-v2-sbc-adds-certified-wifi-and-industrial-temp-support/
https://zedboard.org/sites/default/files/documentations/Ultra96-HW-User-Guide-rev-1-0-V1_1.pdf
https://zedboard.org/sites/default/files/documentations/Ultra96-HW-User-Guide-rev-1-0-V1_1.pdf
https://zedboard.org/sites/default/files/documentations/Ultra96-HW-User-Guide-rev-1-0-V1_1.pdf
https://www.xilinx.com/support/documentation/sw_manuals/ug998-vivado-intro-fpga-design-hls.pdf
https://www.xilinx.com/support/documentation/sw_manuals/ug998-vivado-intro-fpga-design-hls.pdf


Bibliography

[12] Xilinx. “Introduction to High-Level Synthesis with Vovado HLS”. https://users.

ece.utexas.edu/˜gerstl/ee382v_f14/soc/vivado_hls/VivadoHLS_Overview.pdf. [On-
line; accessed 20-Jun-2020].

[13] Yaman Umuroglu, Nicholas J. Fraser, Giulio Gambardella, Michaela Blott, Philip Leong,
Magnus Jahre, and Kees Vissers. Finn: A framework for fast, scalable binarized neural
network inference. Proceedings of the 2017 ACM/SIGDA International Symposium on Field-
Programmable Gate Arrays - FPGA ’17, 2017.

[14] Xilinx. “FINN Documentation”. https://finn.readthedocs.io. [Online; accessed 10-Jun-
2020].

[15] Xilinx. “FINN-HLS”. https://finn-hlslib.readthedocs.io/en/latest/. [Online; ac-
cessed 10-Jun-2020].

[16] Xilinx. “Binarized Neural Networks (BNNs) on PYNQ”. https://github.com/Xilinx/

BNN-PYNQ. [Online; accessed 15-May-2020].

[17] Matthieu Courbariaux and Yoshua Bengio. Binarynet: Training deep neural networks with
weights and activations constrained to +1 or -1. CoRR, abs/1602.02830, 2016.

[18] Adiuvo. “PYNQ the coolest Python Framework you never heard about”. https://files.

devnetwork.cloud/DeveloperWeekAustin/presentations/2019/Adam-Taylor.pdf. [On-
line; accessed 10-Jun-2020].

[19] Xilinx. “Quantized Neural Networks (QNNs) on PYNQ”. https://github.com/Xilinx/

QNN-MO-PYNQ. [Online; accessed 15-May-2020].

[20] Itay Hubara, Matthieu Courbariaux, Daniel Soudry, Ran El-Yaniv, and Yoshua Bengio. Quan-
tized neural networks: Training neural networks with low precision weights and activations.
CoRR, abs/1609.07061, 2016.

[21] Joseph Redmon, Santosh Kumar Divvala, Ross B. Girshick, and Ali Farhadi. You only look
once: Unified, real-time object detection. CoRR, abs/1506.02640, 2015.

[22] Amro Kamal. “YOLO, YOLOv2 and YOLOv3: All You
want to know”. https://medium.com/@amrokamal_47691/

yolo-yolov2-and-yolov3-all-you-want-to-know-7e3e92dc4899, 2019. [Online; ac-
cessed 23-May-2020].

[23] Joseph Redmon. “Darknet: Open Source Neural Networks in C”. http://pjreddie.com/

darknet/, 2013–2016.

[24] Xilinx. “Computer Vision Overlays on PYNQ”. https://github.com/Xilinx/

PYNQ-ComputerVision. [Online; accessed 16-Jun-2020].

[25] Xilinx. “Xilinx xfOpenCV Library”. https://github.com/Xilinx/xfopencv. [Online; ac-
cessed 16-Jun-2020].

[26] D. Kriegman P. Belhumeur, J. Hespanha. “ÒEigenfaces vs. Fisherfaces: Recognition Using
Class Specific Linear Projection, Ó IEEE Transactions on Pattern Analysis and Machine
Intelligence”. http://vision.ucsd.edu/content/yale-face-database, 1997.

70

https://users.ece.utexas.edu/~gerstl/ee382v_f14/soc/vivado_hls/VivadoHLS_Overview.pdf
https://users.ece.utexas.edu/~gerstl/ee382v_f14/soc/vivado_hls/VivadoHLS_Overview.pdf
https://finn.readthedocs.io
https://finn-hlslib.readthedocs.io/en/latest/
https://github.com/Xilinx/BNN-PYNQ
https://github.com/Xilinx/BNN-PYNQ
https://files.devnetwork.cloud/DeveloperWeekAustin/presentations/2019/Adam-Taylor.pdf
https://files.devnetwork.cloud/DeveloperWeekAustin/presentations/2019/Adam-Taylor.pdf
https://github.com/Xilinx/QNN-MO-PYNQ
https://github.com/Xilinx/QNN-MO-PYNQ
https://medium.com/@amrokamal_47691/yolo-yolov2-and-yolov3-all-you-want-to-know-7e3e92dc4899
https://medium.com/@amrokamal_47691/yolo-yolov2-and-yolov3-all-you-want-to-know-7e3e92dc4899
http://pjreddie.com/darknet/
http://pjreddie.com/darknet/
https://github.com/Xilinx/PYNQ-ComputerVision
https://github.com/Xilinx/PYNQ-ComputerVision
https://github.com/Xilinx/xfopencv
http://vision.ucsd.edu/content/yale-face-database


PROYECTO FIN DE GRADO

[27] Wikipedia. “One-hot — Wikipedia, the free encyclopedia”. https://en.wikipedia.org/

wiki/One-hot. [Online; accessed 14-May-2020].

[28] Steve Golson. “One-hot state machine design for FPGAs”, 1993.

[29] Gregory S. Kielian. “JPG and PNG to MNIST”. https://github.com/ledinhphuong/

JPG-PNG-to-MNIST-NN-Format. [Online; accessed 13-May-2020].

[30] Phuong Le. “JPG and PNG to MNIST (Fork)”. https://github.com/ledinhphuong/

JPG-PNG-to-MNIST-NN-Format/tree/wip. [Online; accessed 14-May-2020].

[31] Mikel Solabarrieta. “PYNQ Notebooks”. https://gitlab.com/mikelsr/pynq. [Online; ac-
cessed 22-May-2020].

[32] Mikel Solabarrieta. “yale-to-gtsrb”. https://github.com/mikelsr/yate-to-gtsrb. [Online;
accessed 16-Jun-2020].

[33] Joseph Redmon. “Darknet”. https://github.com/pjreddie/darknet. [Online; accessed
22-May-2020].

[34] Giulio Gambardella. “Darknet (Fork). https://github.com/giuliogamba/darknet. [Online;
accessed 22-May-2020].

[35] Mikel Solabarrieta. “Darknet (Fork)”. https://github.com/mikelsr/darknet. [Online;
accessed 22-May-2020].

71

https://en.wikipedia.org/wiki/One-hot
https://en.wikipedia.org/wiki/One-hot
https://github.com/ledinhphuong/JPG-PNG-to-MNIST-NN-Format
https://github.com/ledinhphuong/JPG-PNG-to-MNIST-NN-Format
https://github.com/ledinhphuong/JPG-PNG-to-MNIST-NN-Format/tree/wip
https://github.com/ledinhphuong/JPG-PNG-to-MNIST-NN-Format/tree/wip
https://gitlab.com/mikelsr/pynq
https://github.com/mikelsr/yate-to-gtsrb
https://github.com/pjreddie/darknet
https://github.com/giuliogamba/darknet
https://github.com/mikelsr/darknet




PROYECTO FIN DE GRADO

Acronyms

ACP Accelerator Coherency Port

AI Artificial Intelligence

AMBA Advanced Micro-controller Bus Architecture

APU Application Processor Unit

ARM Advanced RISC Machine

AXI Advanced Extensible Interface

BC Bluetooth Classic

BLE Bluetooth Low Energy

BNN Binarized Neural Network

BSD Berkeley Software Distribution

CFFI C Foreign Function Interface

CLB Configurable Logic Block

CIFRAR Canadian Institute For Advanced Research

CPU Central processing unit

CV Computer Vision

DDR Double Data Rate

DMA Direct Memory Access

EMIO Extended Multiplexed IO

FIFO First In First Out

FPGA Field-Programmable Gate Array

FPS Frames per Second

GPU Graphics Processing Unit

GTSRB German Traffic Sign Recognition Benchmark

73



9.Acronyms

HLS High-Level Synthesis

HPC High Performance Computing

HW Hardware

IO Input/Output

IoT Internet of Things

IP Intellectual Property

JSON JavaScript Object Notation

LUT Look-Up Table

MIO Multiplexed IO

MMU Memory Management Unit

MNIST Modified National Institute of Standards and Technology

MPU Master Processing Unit

MPSoC Multiprocessor System-on-Chip

OCM On-Chip Memory

ONNX Open Neural Network Exchange

PPM Portable Pixmap

PS Processing System

PL Programmable Logic

QNN Quantized Neural Network

QoS Quality of Service

VHDL Very High Speed Integrated Circuit Hardware Description Language

RoHS Restriction of Hazardous Substances Directive

ROM Read Only Memory

RPU Real-Time Processing Unit

RTL Register-Transfer Level

SoC System-on-Chip

SRAM Static Random Access Memory

SSH Secure Shell

SW Software

YOLO You Only Look Once

74



PROYECTO FIN DE GRADO

Acknowledgements

I would like to thank Ignacio Angulo Mart́ınez for his continuous support and tutoring, proposing
solutions when I was stuck on a problem, as well as introducing me to PYNQ and providing all the
necessary resources and materials. The project would have not been possible without his help and
advice. I would also like to thank Antonio David Masegosa for advising me on Artificial Intelligence
and taking the time to answer my questions.

75



 



PROYECTO FIN DE GRADO

Appendix A

Vivado Block Designs

This annex includes, in order, the Vivado block diagrams for the LFCW1A2 (BNN), W1A3 (QNN)
and the integration of both.



B
T

_c
ts

n

B
T

_r
ts

n

B
la

ck
B

ox
Ja

m
_0

s_
ax

i_
co

nt
ro

l
m

_a
xi

_h
os

tm
em

ap
_c

lk

ap
_r

st
_n

in
te

rr
up

t

G
P

IO
_S

E
N

S
O

R
S

U
A

R
T

1

ax
i_

sm
c

A
X

I S
m

ar
tC

on
ne

ct

S
00

_A
X

I

M
00

_A
X

I
ac

lk

ar
es

et
n

ps
8_

0_
ax

i_
pe

rip
h

A
X

I I
nt

er
co

nn
ec

t

S
00

_A
X

I

M
00

_A
X

I

A
C

LK

A
R

E
S

E
T

N

S
00

_A
C

LK

S
00

_A
R

E
S

E
T

N

M
00

_A
C

LK

M
00

_A
R

E
S

E
T

N

rs
t_

ps
8_

0_
29

9M

P
ro

ce
ss

or
 S

ys
te

m
 R

es
et

sl
ow

es
t_

sy
nc

_c
lk

ex
t_

re
se

t_
in

au
x_

re
se

t_
in

m
b_

de
bu

g_
sy

s_
rs

t

dc
m

_l
oc

ke
d

m
b_

re
se

t

bu
s_

st
ru

ct
_r

es
et

[0
:0

]

pe
rip

he
ra

l_
re

se
t[0

:0
]

in
te

rc
on

ne
ct

_a
re

se
tn

[0
:0

]

pe
rip

he
ra

l_
ar

es
et

n[
0:

0]

zy
nq

_u
ltr

a_
ps

_e
_0

Z
yn

q 
U

ltr
aS

ca
le

+
 M

P
S

oC

M
_A

X
I_

H
P

M
0_

F
P

D

S
_A

X
I_

H
P

0_
F

P
D

G
P

IO
_0

U
A

R
T

_0

em
io

_u
ar

t0
_c

ts
n

em
io

_u
ar

t0
_r

ts
n

U
A

R
T

_1
m

ax
ih

pm
0_

fp
d_

ac
lk

sa
xi

hp
0_

fp
d_

ac
lk

pl
_p

s_
irq

0[
0:

0]
pl

_r
es

et
n0

pl
_c

lk
0

pl
_c

lk
1

pl
_c

lk
2

pl
_c

lk
3



B
T

_c
ts

n

B
T

_r
ts

n

B
la

ck
B

ox
Ja

m
_0

s_
ax

i_
co

nt
ro

l
m

_a
xi

_h
os

tm
em

1

m
_a

xi
_h

os
tm

em
2

ap
_c

lk

ap
_r

st
_n

in
te

rr
up

t

G
P

IO
_S

E
N

S
O

R
S

U
A

R
T

1

ax
i_

sm
c

A
X

I S
m

ar
tC

on
ne

ct

S
00

_A
X

I

M
00

_A
X

I
ac

lk

ar
es

et
n

ax
i_

sm
c_

1

A
X

I S
m

ar
tC

on
ne

ct

S
00

_A
X

I

M
00

_A
X

I
ac

lk

ar
es

et
n

ps
8_

0_
ax

i_
pe

rip
h

A
X

I I
nt

er
co

nn
ec

t

S
00

_A
X

I

M
00

_A
X

I

A
C

LK

A
R

E
S

E
T

N

S
00

_A
C

LK

S
00

_A
R

E
S

E
T

N

M
00

_A
C

LK

M
00

_A
R

E
S

E
T

N

rs
t_

ps
8_

0_
24

9M

P
ro

ce
ss

or
 S

ys
te

m
 R

es
et

sl
ow

es
t_

sy
nc

_c
lk

ex
t_

re
se

t_
in

au
x_

re
se

t_
in

m
b_

de
bu

g_
sy

s_
rs

t

dc
m

_l
oc

ke
d

m
b_

re
se

t

bu
s_

st
ru

ct
_r

es
et

[0
:0

]

pe
rip

he
ra

l_
re

se
t[0

:0
]

in
te

rc
on

ne
ct

_a
re

se
tn

[0
:0

]

pe
rip

he
ra

l_
ar

es
et

n[
0:

0]

zy
nq

_u
ltr

a_
ps

_e
_0

Z
yn

q 
U

ltr
aS

ca
le

+
 M

P
S

oC

M
_A

X
I_

H
P

M
0_

F
P

D

S
_A

X
I_

H
P

0_
F

P
D

S
_A

X
I_

H
P

2_
F

P
D

G
P

IO
_0

U
A

R
T

_0

em
io

_u
ar

t0
_c

ts
n

em
io

_u
ar

t0
_r

ts
n

U
A

R
T

_1
m

ax
ih

pm
0_

fp
d_

ac
lk

sa
xi

hp
0_

fp
d_

ac
lk

sa
xi

hp
2_

fp
d_

ac
lk

pl
_p

s_
irq

0[
0:

0]

pl
_r

es
et

n0

pl
_c

lk
0

pl
_c

lk
1

pl
_c

lk
2

pl
_c

lk
3



B
la

ck
B

ox
Ja

m
B

N
N

_0

B
la

ck
bo

xj
am

B
N

N
 (

P
re

-P
ro

du
ct

io
n)

s_
ax

i_
co

nt
ro

l
m

_a
xi

_h
os

tm
em

ap
_c

lk

ap
_r

st
_n

in
te

rr
up

t

B
la

ck
B

ox
Ja

m
_0

B
la

ck
bo

xj
am

 (
P

re
-P

ro
du

ct
io

n)

s_
ax

i_
co

nt
ro

l
m

_a
xi

_h
os

tm
em

1

m
_a

xi
_h

os
tm

em
2

ap
_c

lk

ap
_r

st
_n

in
te

rr
up

t

ps
8_

0_
ax

i_
pe

rip
h

A
X

I I
nt

er
co

nn
ec

t

S
00

_A
X

I

M
00

_A
X

I

M
01

_A
X

I

S
01

_A
X

I

S
02

_A
X

I

A
C

LK

A
R

E
S

E
T

N

S
00

_A
C

LK

S
00

_A
R

E
S

E
T

N

M
00

_A
C

LK

M
00

_A
R

E
S

E
T

N

M
01

_A
C

LK

M
01

_A
R

E
S

E
T

N

S
01

_A
C

LK

S
01

_A
R

E
S

E
T

N

S
02

_A
C

LK

S
02

_A
R

E
S

E
T

N

rs
t_

ps
8_

0_
10

0M

P
ro

ce
ss

or
 S

ys
te

m
 R

es
et

sl
ow

es
t_

sy
nc

_c
lk

ex
t_

re
se

t_
in

au
x_

re
se

t_
in

m
b_

de
bu

g_
sy

s_
rs

t

dc
m

_l
oc

ke
d

m
b_

re
se

t

bu
s_

st
ru

ct
_r

es
et

[0
:0

]

pe
rip

he
ra

l_
re

se
t[0

:0
]

in
te

rc
on

ne
ct

_a
re

se
tn

[0
:0

]

pe
rip

he
ra

l_
ar

es
et

n[
0:

0]

sm
ar

tc
on

ne
ct

_0

A
X

I S
m

ar
tC

on
ne

ct

S
00

_A
X

I

S
01

_A
X

I
M

00
_A

X
I

ac
lk

ar
es

et
n

sm
ar

tc
on

ne
ct

_1

A
X

I S
m

ar
tC

on
ne

ct

S
00

_A
X

I

M
00

_A
X

I
ac

lk

ar
es

et
n

sm
ar

tc
on

ne
ct

_2

A
X

I S
m

ar
tC

on
ne

ct

S
00

_A
X

I

M
00

_A
X

I
ac

lk

ar
es

et
n

zy
nq

_u
ltr

a_
ps

_e
_0

Z
yn

q 
U

ltr
aS

ca
le

+
 M

P
S

oC

M
_A

X
I_

H
P

M
0_

F
P

D

M
_A

X
I_

H
P

M
1_

F
P

D

M
_A

X
I_

H
P

M
0_

LP
D

S
_A

X
I_

H
P

C
0_

F
P

D

S
_A

X
I_

H
P

C
1_

F
P

D

S
_A

X
I_

H
P

0_
F

P
D

m
ax

ih
pm

0_
fp

d_
ac

lk

m
ax

ih
pm

1_
fp

d_
ac

lk

m
ax

ih
pm

0_
lp

d_
ac

lk

sa
xi

hp
c0

_f
pd

_a
cl

k

sa
xi

hp
c1

_f
pd

_a
cl

k

sa
xi

hp
0_

fp
d_

ac
lk

pl
_p

s_
irq

0[
0:

0]

pl
_r

es
et

n0

pl
_c

lk
0



PROYECTO FIN DE GRADO

Appendix B

Integration Utilization Report

This annex includes the BNN and QNN BlackBoxJam utilization reports. The first document
contains the utilization report for one of the BNN BlackBoxJam IPs, while the second one contains
the utilization report of the QNN IP.



File: /home/mikel/tmp/util/bnn_blackbox.rpt Page 1 of 4

Copyright 1986-2018 Xilinx, Inc. All Rights Reserved.
-------------------------------------------------------------------------------------
| Tool Version : Vivado v.2018.2 (lin64) Build 2258646 Thu Jun 14 20:02:38 MDT 2018
| Date         : Tue May 12 23:26:16 2020
| Host         : vm running 64-bit Ubuntu 18.04.4 LTS
| Command      : report_utilization -file design_1_BlackBoxJamBNN_0_0_utilization_synth.rpt -
pb design_1_BlackBoxJamBNN_0_0_utilization_synth.pb
| Design       : design_1_BlackBoxJamBNN_0_0
| Device       : xczu3egsbva484-1
| Design State : Synthesized
-------------------------------------------------------------------------------------
 
Utilization Design Information
 
Table of Contents
-----------------
1. CLB Logic
1.1 Summary of Registers by Type
2. BLOCKRAM
3. ARITHMETIC
4. I/O
5. CLOCK
6. ADVANCED
7. CONFIGURATION
8. Primitives
9. Black Boxes
10. Instantiated Netlists
 
1. CLB Logic
------------
 
+----------------------------+-------+-------+-----------+-------+
|          Site Type         |  Used | Fixed | Available | Util% |
+----------------------------+-------+-------+-----------+-------+
| CLB LUTs*                  | 47852 |     0 |     70560 | 67.82 |
|   LUT as Logic             | 42986 |     0 |     70560 | 60.92 |
|   LUT as Memory            |  4866 |     0 |     28800 | 16.90 |
|     LUT as Distributed RAM |  4352 |     0 |           |       |
|     LUT as Shift Register  |   514 |     0 |           |       |
| CLB Registers              | 32009 |     0 |    141120 | 22.68 |
|   Register as Flip Flop    | 32009 |     0 |    141120 | 22.68 |
|   Register as Latch        |     0 |     0 |    141120 |  0.00 |
| CARRY8                     |   780 |     0 |      8820 |  8.84 |
| F7 Muxes                   |  1658 |     0 |     35280 |  4.70 |
| F8 Muxes                   |   638 |     0 |     17640 |  3.62 |
| F9 Muxes                   |     0 |     0 |      8820 |  0.00 |
+----------------------------+-------+-------+-----------+-------+
* Warning! The Final LUT count, after physical optimizations and full implementation, is
typically lower. Run opt_design after synthesis, if not already completed, for a more
realistic count.
 
 
1.1 Summary of Registers by Type
--------------------------------
 
+-------+--------------+-------------+--------------+
| Total | Clock Enable | Synchronous | Asynchronous |
+-------+--------------+-------------+--------------+
| 0     |            _ |           - |            - |
| 0     |            _ |           - |          Set |
| 0     |            _ |           - |        Reset |
| 0     |            _ |         Set |            - |



File: /home/mikel/tmp/util/bnn_blackbox.rpt Page 2 of 4

| 0     |            _ |       Reset |            - |
| 0     |          Yes |           - |            - |
| 0     |          Yes |           - |          Set |
| 0     |          Yes |           - |        Reset |
| 65    |          Yes |         Set |            - |
| 31944 |          Yes |       Reset |            - |
+-------+--------------+-------------+--------------+
 
 
2. BLOCKRAM
-----------
 
+-------------------+------+-------+-----------+-------+
|     Site Type     | Used | Fixed | Available | Util% |
+-------------------+------+-------+-----------+-------+
| Block RAM Tile    |  110 |     0 |       216 | 50.93 |
|   RAMB36/FIFO*    |    6 |     0 |       216 |  2.78 |
|     RAMB36E2 only |    6 |       |           |       |
|   RAMB18          |  208 |     0 |       432 | 48.15 |
|     RAMB18E2 only |  208 |       |           |       |
+-------------------+------+-------+-----------+-------+
* Note: Each Block RAM Tile only has one FIFO logic available and therefore can accommodate
only one FIFO36E2 or one FIFO18E2. However, if a FIFO18E2 occupies a Block RAM Tile, that
tile can still accommodate a RAMB18E2
 
 
3. ARITHMETIC
-------------
 
+----------------+------+-------+-----------+-------+
|    Site Type   | Used | Fixed | Available | Util% |
+----------------+------+-------+-----------+-------+
| DSPs           |    4 |     0 |       360 |  1.11 |
|   DSP48E2 only |    4 |       |           |       |
+----------------+------+-------+-----------+-------+
 
 
4. I/O
------
 
+------------+------+-------+-----------+-------+
|  Site Type | Used | Fixed | Available | Util% |
+------------+------+-------+-----------+-------+
| Bonded IOB |    0 |     0 |        82 |  0.00 |
+------------+------+-------+-----------+-------+
 
 
5. CLOCK
--------
 
+----------------------+------+-------+-----------+-------+
|       Site Type      | Used | Fixed | Available | Util% |
+----------------------+------+-------+-----------+-------+
| GLOBAL CLOCK BUFFERs |    0 |     0 |       196 |  0.00 |
|   BUFGCE             |    0 |     0 |        88 |  0.00 |
|   BUFGCE_DIV         |    0 |     0 |        12 |  0.00 |
|   BUFG_PS            |    0 |     0 |        72 |  0.00 |
|   BUFGCTRL*          |    0 |     0 |        24 |  0.00 |
| PLL                  |    0 |     0 |         6 |  0.00 |
| MMCM                 |    0 |     0 |         3 |  0.00 |
+----------------------+------+-------+-----------+-------+
* Note: Each used BUFGCTRL counts as two global buffer resources. This table does not include 



File: /home/mikel/tmp/util/bnn_blackbox.rpt Page 3 of 4

global clocking resources, only buffer cell usage. See the Clock Utilization Report
(report_clock_utilization) for detailed accounting of global clocking resource availability.

 
6. ADVANCED
-----------
 
+-----------+------+-------+-----------+-------+
| Site Type | Used | Fixed | Available | Util% |
+-----------+------+-------+-----------+-------+
| PS8       |    0 |     0 |         1 |  0.00 |
| SYSMONE4  |    0 |     0 |         1 |  0.00 |
+-----------+------+-------+-----------+-------+
 
 
7. CONFIGURATION
----------------
 
+-------------+------+-------+-----------+-------+
|  Site Type  | Used | Fixed | Available | Util% |
+-------------+------+-------+-----------+-------+
| BSCANE2     |    0 |     0 |         4 |  0.00 |
| DNA_PORTE2  |    0 |     0 |         1 |  0.00 |
| EFUSE_USR   |    0 |     0 |         1 |  0.00 |
| FRAME_ECCE4 |    0 |     0 |         1 |  0.00 |
| ICAPE3      |    0 |     0 |         2 |  0.00 |
| MASTER_JTAG |    0 |     0 |         1 |  0.00 |
| STARTUPE3   |    0 |     0 |         1 |  0.00 |
+-------------+------+-------+-----------+-------+
 
 
8. Primitives
-------------
 
+----------+-------+---------------------+
| Ref Name |  Used | Functional Category |
+----------+-------+---------------------+
| FDRE     | 31944 |            Register |
| LUT6     | 20107 |                 CLB |
| LUT5     |  9974 |                 CLB |
| LUT4     |  9582 |                 CLB |
| LUT3     |  7061 |                 CLB |
| RAMS32   |  4352 |                 CLB |
| LUT2     |  2600 |                 CLB |
| MUXF7    |  1658 |                 CLB |
| CARRY8   |   780 |                 CLB |
| MUXF8    |   638 |                 CLB |
| SRL16E   |   514 |                 CLB |
| RAMB18E2 |   208 |           Block Ram |
| LUT1     |   121 |                 CLB |
| FDSE     |    65 |            Register |
| RAMB36E2 |     6 |           Block Ram |
| DSP48E2  |     4 |          Arithmetic |
+----------+-------+---------------------+
 
 
9. Black Boxes
--------------
 
+----------+------+
| Ref Name | Used |
+----------+------+



File: /home/mikel/tmp/util/bnn_blackbox.rpt Page 4 of 4

 
 
10. Instantiated Netlists
-------------------------
 
+----------+------+
| Ref Name | Used |
+----------+------+
 



File: /home/mikel/tmp/util/qnn_blackbox.rpt Page 1 of 4

Copyright 1986-2018 Xilinx, Inc. All Rights Reserved.
-------------------------------------------------------------------------------------
| Tool Version : Vivado v.2018.2 (lin64) Build 2258646 Thu Jun 14 20:02:38 MDT 2018
| Date         : Tue May 12 23:33:11 2020
| Host         : vm running 64-bit Ubuntu 18.04.4 LTS
| Command      : report_utilization -file design_1_BlackBoxJam_0_0_utilization_synth.rpt -pb
design_1_BlackBoxJam_0_0_utilization_synth.pb
| Design       : design_1_BlackBoxJam_0_0
| Device       : xczu3egsbva484-1
| Design State : Synthesized
-------------------------------------------------------------------------------------
 
Utilization Design Information
 
Table of Contents
-----------------
1. CLB Logic
1.1 Summary of Registers by Type
2. BLOCKRAM
3. ARITHMETIC
4. I/O
5. CLOCK
6. ADVANCED
7. CONFIGURATION
8. Primitives
9. Black Boxes
10. Instantiated Netlists
 
1. CLB Logic
------------
 
+----------------------------+-------+-------+-----------+-------+
|          Site Type         |  Used | Fixed | Available | Util% |
+----------------------------+-------+-------+-----------+-------+
| CLB LUTs*                  | 36472 |     0 |     70560 | 51.69 |
|   LUT as Logic             | 33117 |     0 |     70560 | 46.93 |
|   LUT as Memory            |  3355 |     0 |     28800 | 11.65 |
|     LUT as Distributed RAM |  2304 |     0 |           |       |
|     LUT as Shift Register  |  1051 |     0 |           |       |
| CLB Registers              | 32918 |     0 |    141120 | 23.33 |
|   Register as Flip Flop    | 32918 |     0 |    141120 | 23.33 |
|   Register as Latch        |     0 |     0 |    141120 |  0.00 |
| CARRY8                     |  1172 |     0 |      8820 | 13.29 |
| F7 Muxes                   |   277 |     0 |     35280 |  0.79 |
| F8 Muxes                   |   125 |     0 |     17640 |  0.71 |
| F9 Muxes                   |     0 |     0 |      8820 |  0.00 |
+----------------------------+-------+-------+-----------+-------+
* Warning! The Final LUT count, after physical optimizations and full implementation,is
typically lower. Run opt_design after synthesis, if not already completed, for a more
realistic count.
 
 
1.1 Summary of Registers by Type
--------------------------------
 
+-------+--------------+-------------+--------------+
| Total | Clock Enable | Synchronous | Asynchronous |
+-------+--------------+-------------+--------------+
| 0     |            _ |           - |            - |
| 0     |            _ |           - |          Set |
| 0     |            _ |           - |        Reset |
| 0     |            _ |         Set |            - |



File: /home/mikel/tmp/util/qnn_blackbox.rpt Page 2 of 4

| 0     |            _ |       Reset |            - |
| 0     |          Yes |           - |            - |
| 0     |          Yes |           - |          Set |
| 0     |          Yes |           - |        Reset |
| 292   |          Yes |         Set |            - |
| 32626 |          Yes |       Reset |            - |
+-------+--------------+-------------+--------------+
 
 
2. BLOCKRAM
-----------
 
+-------------------+-------+-------+-----------+-------+
|     Site Type     |  Used | Fixed | Available | Util% |
+-------------------+-------+-------+-----------+-------+
| Block RAM Tile    | 190.5 |     0 |       216 | 88.19 |
|   RAMB36/FIFO*    |   187 |     0 |       216 | 86.57 |
|     RAMB36E2 only |   187 |       |           |       |
|   RAMB18          |     7 |     0 |       432 |  1.62 |
|     RAMB18E2 only |     7 |       |           |       |
+-------------------+-------+-------+-----------+-------+
* Note: Each Block RAM Tile only has one FIFO logic available and therefore can accommodate
only one FIFO36E2 or one FIFO18E2. However, if a FIFO18E2 occupies a Block RAM Tile, that
tile can still accommodate a RAMB18E2
 
 
3. ARITHMETIC
-------------
 
+----------------+------+-------+-----------+-------+
|    Site Type   | Used | Fixed | Available | Util% |
+----------------+------+-------+-----------+-------+
| DSPs           |   53 |     0 |       360 | 14.72 |
|   DSP48E2 only |   53 |       |           |       |
+----------------+------+-------+-----------+-------+
 
 
4. I/O
------
 
+------------+------+-------+-----------+-------+
|  Site Type | Used | Fixed | Available | Util% |
+------------+------+-------+-----------+-------+
| Bonded IOB |    0 |     0 |        82 |  0.00 |
+------------+------+-------+-----------+-------+
 
 
5. CLOCK
--------
 
+----------------------+------+-------+-----------+-------+
|       Site Type      | Used | Fixed | Available | Util% |
+----------------------+------+-------+-----------+-------+
| GLOBAL CLOCK BUFFERs |    0 |     0 |       196 |  0.00 |
|   BUFGCE             |    0 |     0 |        88 |  0.00 |
|   BUFGCE_DIV         |    0 |     0 |        12 |  0.00 |
|   BUFG_PS            |    0 |     0 |        72 |  0.00 |
|   BUFGCTRL*          |    0 |     0 |        24 |  0.00 |
| PLL                  |    0 |     0 |         6 |  0.00 |
| MMCM                 |    0 |     0 |         3 |  0.00 |
+----------------------+------+-------+-----------+-------+
* Note: Each used BUFGCTRL counts as two global buffer resources. This table does not include 



File: /home/mikel/tmp/util/qnn_blackbox.rpt Page 3 of 4

global clocking resources, only buffer cell usage. See the Clock Utilization Report
(report_clock_utilization) for detailed accounting of global clocking resource availability.

 
6. ADVANCED
-----------
 
+-----------+------+-------+-----------+-------+
| Site Type | Used | Fixed | Available | Util% |
+-----------+------+-------+-----------+-------+
| PS8       |    0 |     0 |         1 |  0.00 |
| SYSMONE4  |    0 |     0 |         1 |  0.00 |
+-----------+------+-------+-----------+-------+
 
 
7. CONFIGURATION
----------------
 
+-------------+------+-------+-----------+-------+
|  Site Type  | Used | Fixed | Available | Util% |
+-------------+------+-------+-----------+-------+
| BSCANE2     |    0 |     0 |         4 |  0.00 |
| DNA_PORTE2  |    0 |     0 |         1 |  0.00 |
| EFUSE_USR   |    0 |     0 |         1 |  0.00 |
| FRAME_ECCE4 |    0 |     0 |         1 |  0.00 |
| ICAPE3      |    0 |     0 |         2 |  0.00 |
| MASTER_JTAG |    0 |     0 |         1 |  0.00 |
| STARTUPE3   |    0 |     0 |         1 |  0.00 |
+-------------+------+-------+-----------+-------+
 
 
8. Primitives
-------------
 
+----------+-------+---------------------+
| Ref Name |  Used | Functional Category |
+----------+-------+---------------------+
| FDRE     | 32626 |            Register |
| LUT6     | 11684 |                 CLB |
| LUT4     |  9545 |                 CLB |
| LUT5     |  8245 |                 CLB |
| LUT3     |  8136 |                 CLB |
| LUT2     |  5545 |                 CLB |
| RAMD32   |  4032 |                 CLB |
| CARRY8   |  1172 |                 CLB |
| SRL16E   |  1050 |                 CLB |
| RAMS32   |   576 |                 CLB |
| LUT1     |   437 |                 CLB |
| FDSE     |   292 |            Register |
| MUXF7    |   277 |                 CLB |
| RAMB36E2 |   187 |           Block Ram |
| MUXF8    |   125 |                 CLB |
| DSP48E2  |    53 |          Arithmetic |
| RAMB18E2 |     7 |           Block Ram |
| SRLC32E  |     1 |                 CLB |
+----------+-------+---------------------+
 
 
9. Black Boxes
--------------
 
+----------+------+



File: /home/mikel/tmp/util/qnn_blackbox.rpt Page 4 of 4

| Ref Name | Used |
+----------+------+

 
10. Instantiated Netlists
-------------------------
 
+----------+------+
| Ref Name | Used |
+----------+------+
 





PROYECTO FIN DE GRADO

Appendix C

HLS Example

Some of the files used to generate the LFCW1A1 bitstream are included in this annex. They are
located in the original BNN-PYNQ repository (https://github.com/Xilinx/BNN-PYNQ). The
first one contains the HLS description of the network, the second one contains the configuration
of the network layers and the final one contains the software implementation of the network. The
files depend on two other repositories, “finn-hls” (https://github.com/Xilinx/finn-hlslib)
for the most part of the HLS definition and “xilinx-tiny-cnn” (https://github.com/Xilinx/

xilinx-tiny-cnn)for the neural network implementation.

https://github.com/Xilinx/BNN-PYNQ
https://github.com/Xilinx/finn-hlslib
https://github.com/Xilinx/xilinx-tiny-cnn
https://github.com/Xilinx/xilinx-tiny-cnn


File: /tmp/BNN-PYNQ/bnn/src/network/lfcW1A1/hw/top.cpp Page 1 of 3

/******************************************************************************
 *  Copyright (c) 2016, Xilinx, Inc.
 *  All rights reserved.
 *
 *  Redistribution and use in source and binary forms, with or without
 *  modification, are permitted provided that the following conditions are met:
 *
 *  1.  Redistributions of source code must retain the above copyright notice,
 *     this list of conditions and the following disclaimer.
 *
 *  2.  Redistributions in binary form must reproduce the above copyright
 *      notice, this list of conditions and the following disclaimer in the
 *      documentation and/or other materials provided with the distribution.
 *
 *  3.  Neither the name of the copyright holder nor the names of its
 *      contributors may be used to endorse or promote products derived from
 *      this software without specific prior written permission.
 *
 *  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 *  AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
 *  THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
 *  PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR
 *  CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
 *  EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
 *  PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
 *  OR BUSINESS INTERRUPTION). HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
 *  WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
 *  OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
 *  ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 *
 *****************************************************************************/
 
/******************************************************************************
 *
 *
 * @file top.cpp
 *
 * HLS Description of the LFC BNN, with axi-lite based parameter loading (DoMemInit) 
 * and  dataflow architecture of the image inference (DoCompute)
 * 
 *
 *****************************************************************************/
 
 
 
#include "config.h"
#include "bnn-library.h"
#include "dma.h"
#include "fclayer.h"
#include "weights.hpp"
#include "activations.hpp"
#include "interpret.hpp"
 
static BinaryWeights<L0_SIMD,L0_PE,L0_WMEM> weights0;
static BinaryWeights<L1_SIMD,L1_PE,L1_WMEM> weights1;
static BinaryWeights<L2_SIMD,L2_PE,L2_WMEM> weights2;
static BinaryWeights<L3_SIMD,L3_PE,L3_WMEM> weights3;
 
static ThresholdsActivation<L0_TMEM,L0_PE,L0_API,ap_int<16>,ap_uint<L0_API>> threshs0;
static ThresholdsActivation<L1_TMEM,L1_PE,L1_API,ap_int<16>,ap_uint<L1_API>> threshs1;
static ThresholdsActivation<L2_TMEM,L2_PE,L2_API,ap_int<16>,ap_uint<L2_API>> threshs2;
static ThresholdsActivation<L3_TMEM,L3_PE,L3_API,ap_int<16>,ap_uint<L3_API>> threshs3;



File: /tmp/BNN-PYNQ/bnn/src/network/lfcW1A1/hw/top.cpp Page 2 of 3

 
unsigned int paddedSizeHW(unsigned int in, unsigned int padTo) {
  if(in % padTo == 0) {
    return in;
  } else {
    return in + padTo - (in % padTo);
  }
}
 
void DoMemInit(unsigned int targetLayer, unsigned int targetMem, unsigned int targetInd,
unsigned int targetThresh, ap_uint<64> val) {
  switch(targetLayer) {
    case 0:
      weights0.m_weights[targetMem][targetInd] = val;
      break;
    case 1:
      threshs0.m_thresholds[targetMem][targetInd][targetThresh] = val;
      break;
    case 2:
      weights1.m_weights[targetMem][targetInd] = val;
      break;
    case 3:
      threshs1.m_thresholds[targetMem][targetInd][targetThresh] = val;
      break;
    case 4:
      weights2.m_weights[targetMem][targetInd] = val;
      break;
    case 5:
      threshs2.m_thresholds[targetMem][targetInd][targetThresh] = val;
      break;
    case 6:
      weights3.m_weights[targetMem][targetInd] = val;
      break;
    case 7:
      threshs3.m_thresholds[targetMem][targetInd][targetThresh] = val;
      break;
  }
}
 
void DoCompute(ap_uint<64> *in, ap_uint<64> *out, const unsigned int numReps) {
 
  hls::stream<ap_uint<64>>     memInStrm("DoCompute.memInStrm");
  hls::stream<ap_uint<L0_PE * (L0_API + L0_APF)>>  inter0("DoCompute.inter0");
  hls::stream<ap_uint<L1_PE * (L1_API + L1_APF)>>  inter1("DoCompute.inter1");
  hls::stream<ap_uint<L2_PE * (L2_API + L2_APF)>>  inter2("DoCompute.inter2");
  hls::stream<ap_uint<64>>     memOutStrm("DoCompute.memOutStrm");
 
  // TODO: These values are just for comparability and produce the same amount
  //       of FIFO buffer as in the preceding design.
  //       If the resources allow, these depths should eventually go up to
  //       Lx_DEPTH = Lx_MH/Lx_PE for a smooth operation.
  unsigned const  L0_DEPTH = 512 / L0_PE;
  unsigned const  L1_DEPTH = 512 / L1_PE;
  unsigned const  L2_DEPTH = 512 / L2_PE;
  
#pragma HLS DATAFLOW
#pragma HLS stream depth=1024 variable=memInStrm     // mask memory latency
#pragma HLS stream depth=L0_DEPTH variable=inter0
#pragma HLS stream depth=L1_DEPTH variable=inter1
#pragma HLS stream depth=L2_DEPTH variable=inter2
#pragma HLS stream depth=1024 variable=memOutStrm // mask memory latency
 



File: /tmp/BNN-PYNQ/bnn/src/network/lfcW1A1/hw/top.cpp Page 3 of 3

  const unsigned int inBits = 28 * 28;
  const unsigned int inBitsPadded = 832; // paddedSizeHW(inBits, 64)
  const unsigned int inBytesPadded = inBitsPadded / 8;
  const unsigned int outBits = 64;
  const unsigned int outBitsPadded = 64; // paddedSizeHW(outBits, 64)
  const unsigned int outBytesPadded = outBitsPadded / 8;
  const unsigned int inWordsPerImg = inBitsPadded / 64;
  const unsigned int outWordsPerImg = outBitsPadded / 64;
 
  Mem2Stream_Batch<64, inBytesPadded>(in, memInStrm, numReps);
  StreamingFCLayer_Batch<L0_MW, L0_MH, L0_SIMD, L0_PE, Recast<XnorMul>, Slice<ap_uint<1>>>
    (memInStrm, inter0, weights0, threshs0, numReps, ap_resource_lut());
  StreamingFCLayer_Batch<L1_MW, L1_MH, L1_SIMD, L1_PE, Recast<XnorMul>, Slice<ap_uint<1>>>
    (inter0, inter1, weights1, threshs1, numReps, ap_resource_lut());
  StreamingFCLayer_Batch<L2_MW, L2_MH, L2_SIMD, L2_PE, Recast<XnorMul>, Slice<ap_uint<1>>>
    (inter1, inter2, weights2, threshs2, numReps, ap_resource_lut());
  StreamingFCLayer_Batch<L3_MW, L3_MH, L3_SIMD, L3_PE, Recast<XnorMul>, Slice<ap_uint<1>>>
    (inter2, memOutStrm, weights3, threshs3, numReps, ap_resource_lut());
  Stream2Mem_Batch<64, outBytesPadded>(memOutStrm, out, numReps);
}
 
void BlackBoxJam(ap_uint<64> *in, ap_uint<64> *out, bool doInit,
                 unsigned int targetLayer, unsigned int targetMem,
                 unsigned int targetInd, unsigned int targetThresh, ap_uint<64> val, unsigned
int numReps) {
// pragmas for MLBP jam interface
// signals to be mapped to the AXI Lite slave port
#pragma HLS INTERFACE s_axilite port=return bundle=control
#pragma HLS INTERFACE s_axilite port=doInit bundle=control
#pragma HLS INTERFACE s_axilite port=targetLayer bundle=control
#pragma HLS INTERFACE s_axilite port=targetMem bundle=control
#pragma HLS INTERFACE s_axilite port=targetThresh bundle=control
#pragma HLS INTERFACE s_axilite port=targetInd bundle=control
#pragma HLS INTERFACE s_axilite port=val bundle=control
#pragma HLS INTERFACE s_axilite port=numReps bundle=control
// signals to be mapped to the AXI master port (hostmem)
#pragma HLS INTERFACE m_axi offset=slave port=in bundle=hostmem depth=256
#pragma HLS INTERFACE s_axilite port=in bundle=control
#pragma HLS INTERFACE m_axi offset=slave port=out bundle=hostmem depth=256
#pragma HLS INTERFACE s_axilite port=out bundle=control
 
//partition PE arrays
#pragma HLS ARRAY_PARTITION variable=weights0.m_weights complete dim=1
#pragma HLS ARRAY_PARTITION variable=threshs0.m_thresholds complete dim=1
#pragma HLS ARRAY_PARTITION variable=weights1.m_weights complete dim=1
#pragma HLS ARRAY_PARTITION variable=threshs1.m_thresholds complete dim=1
#pragma HLS ARRAY_PARTITION variable=weights2.m_weights complete dim=1
#pragma HLS ARRAY_PARTITION variable=threshs2.m_thresholds complete dim=1
#pragma HLS ARRAY_PARTITION variable=weights3.m_weights complete dim=1
#pragma HLS ARRAY_PARTITION variable=threshs3.m_thresholds complete dim=1
 
  if (doInit) {
    DoMemInit(targetLayer, targetMem, targetInd, targetThresh, val);
  } else {
    DoCompute(in, out, numReps);
  }
}



File: /tmp/BNN-PYNQ/bnn/src/network/lfcW1A1/hw/config.h Page 1 of 2

/**
 * Finnthesizer Config-File Generation
 *
 **/
 
#ifndef __LAYER_CONFIG_H_
#define __LAYER_CONFIG_H_
 
/**
 * Fully-Connected Layer L0:
 *     MatW =   832 MatH =  1024
 *     SIMD =    64  PE  =    32
 *     WMEM =   416 TMEM =    32
 *     #Ops  = 1703936   Ext Latency  =   416
**/
 
#define L0_SIMD 64
#define L0_PE 32
#define L0_WMEM 416
#define L0_TMEM 32
#define L0_MW 832
#define L0_MH 1024
#define L0_WPI 1
#define L0_API 1
#define L0_WPF 0
#define L0_APF 0
 
/**
 * Fully-Connected Layer L1:
 *     MatW =  1024 MatH =  1024
 *     SIMD =    32  PE  =    64
 *     WMEM =   512 TMEM =    16
 *     #Ops  = 2097152   Ext Latency  =   512
**/
 
#define L1_SIMD 32
#define L1_PE 64
#define L1_WMEM 512
#define L1_TMEM 16
#define L1_MW 1024
#define L1_MH 1024
#define L1_WPI 1
#define L1_API 1
#define L1_WPF 0
#define L1_APF 0
 
/**
 * Fully-Connected Layer L2:
 *     MatW =  1024 MatH =  1024
 *     SIMD =    64  PE  =    32
 *     WMEM =   512 TMEM =    32
 *     #Ops  = 2097152   Ext Latency  =   512
**/
 
#define L2_SIMD 64
#define L2_PE 32
#define L2_WMEM 512
#define L2_TMEM 32
#define L2_MW 1024
#define L2_MH 1024
#define L2_WPI 1
#define L2_API 1



File: /tmp/BNN-PYNQ/bnn/src/network/lfcW1A1/hw/config.h Page 2 of 2

#define L2_WPF 0
#define L2_APF 0

/**
 * Fully-Connected Layer L3:
 *     MatW =  1024 MatH =    64
 *     SIMD =     8  PE  =    16
 *     WMEM =   512 TMEM =     4
 *     #Ops  = 131072   Ext Latency  =   512
**/
 
#define L3_SIMD 8
#define L3_PE 16
#define L3_WMEM 512
#define L3_TMEM 4
#define L3_MW 1024
#define L3_MH 64
#define L3_WPI 1
#define L3_API 1
#define L3_WPF 0
#define L3_APF 0
 
#endif //__LAYER_CONFIG_H_



File: /tmp/BNN-PYNQ/bnn/src/network/lfcW1A1/sw/main_python.cpp Page 1 of 3

/******************************************************************************
 *  Copyright (c) 2016, Xilinx, Inc.
 *  All rights reserved.
 *
 *  Redistribution and use in source and binary forms, with or without
 *  modification, are permitted provided that the following conditions are met:
 *
 *  1.  Redistributions of source code must retain the above copyright notice,
 *     this list of conditions and the following disclaimer.
 *
 *  2.  Redistributions in binary form must reproduce the above copyright
 *      notice, this list of conditions and the following disclaimer in the
 *      documentation and/or other materials provided with the distribution.
 *
 *  3.  Neither the name of the copyright holder nor the names of its
 *      contributors may be used to endorse or promote products derived from
 *      this software without specific prior written permission.
 *
 *  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 *  AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
 *  THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
 *  PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR
 *  CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
 *  EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
 *  PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
 *  OR BUSINESS INTERRUPTION). HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
 *  WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
 *  OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
 *  ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 *
 *****************************************************************************/
/******************************************************************************
 *
 *
 * @file main_python.c
 *
 * Host code for BNN, overlay LFC-Pynq, to manage parameter loading and 
 * classification (inference) on single or multiple images
 * 
 *
 *****************************************************************************/
 
#include "tiny_cnn/tiny_cnn.h"
#include "tiny_cnn/util/util.h"
#include <iostream>
#include <string.h>
#include <chrono>
#include "foldedmv-offload.h"
#include <algorithm>
 
using namespace std;
using namespace tiny_cnn;
using namespace tiny_cnn::activation;
 
void makeNetwork(network<mse, adagrad> & nn) {
  nn
#ifdef OFFLOAD
    << offloaded_layer(28*28, 10, &FoldedMVOffload<ap_int<16>>, 0, 0)
#endif
  ;
}
 



File: /tmp/BNN-PYNQ/bnn/src/network/lfcW1A1/sw/main_python.cpp Page 2 of 3

extern "C" void load_parameters(const char* path) {
#include "config.h"
  FoldedMVInit("lfcW1A1-pynq");
  network<mse, adagrad> nn;
  makeNetwork(nn);
  cout << "Setting network weights and thresholds in accelerator..." << endl;
  FoldedMVLoadLayerMem(path, 0, L0_PE, L0_WMEM, L0_TMEM, L0_API);
  FoldedMVLoadLayerMem(path, 1, L1_PE, L1_WMEM, L1_TMEM, L1_API);
  FoldedMVLoadLayerMem(path, 2, L2_PE, L2_WMEM, L2_TMEM, L2_API);
  FoldedMVLoadLayerMem(path, 3, L3_PE, L3_WMEM, L3_TMEM, L3_API);
}
 
extern "C" int inference(const char* path, int results[64], int number_class, float
*usecPerImage) {
  std::vector<vec_t> test_images;
  std::vector<int> class_result;
  float usecPerImage_int;
  vec_t image;
 
  FoldedMVInit("lfcW1A1-pynq");
  network<mse, adagrad> nn;
  makeNetwork(nn);
  parse_mnist_images(path, &test_images, -1.0, 1.0, 0, 0);
  image = test_images[0];
  class_result=testPrebinarized_nolabel(test_images, number_class, usecPerImage_int);
 
  if(results) {
    std::copy(class_result.begin(),class_result.end(), results);
  } 
  if (usecPerImage) {
    *usecPerImage = usecPerImage_int;
  }
  return (std::distance(class_result.begin(),std::max_element(class_result.begin(),
class_result.end())));
}
 
extern "C" int* inference_multiple(const char* path, int number_class, int *image_number,
float *usecPerImage, unsigned int enable_detail = 0) {
  std::vector<vec_t> test_images;
  std::vector<int> all_result;
  float usecPerImage_int;
  int* result;
 
  FoldedMVInit("lfcW1A1-pynq");
  network<mse, adagrad> nn;
  makeNetwork(nn);
  parse_mnist_images(path, &test_images, -1.0, 1.0, 0, 0);
  all_result=testPrebinarized_nolabel_multiple_images(test_images, number_class,
usecPerImage_int);
 
  result = new int [all_result.size()];
  std::copy(all_result.begin(),all_result.end(), result);
  if (image_number) {
    *image_number = all_result.size();
  }
  if (usecPerImage) {
    *usecPerImage = usecPerImage_int;
  }
  return result;
}
 
extern "C" void free_results(int * result) {



File: /tmp/BNN-PYNQ/bnn/src/network/lfcW1A1/sw/main_python.cpp Page 3 of 3

  delete[] result;
}

extern "C" void deinit() {
  FoldedMVDeinit();
}
 
extern "C" int main(int argc, char** argv) {
  if (argc != 5) {
    cout << "4 parameters are needed: " << endl;
    cout << "1 - folder for the binarized weights (binparam-***) - full path " << endl;
    cout << "2 - path to image to be classified" << endl;
    cout << "3 - number of classes in the dataset" << endl;
    cout << "4 - expected result" << endl;
    return 1;
  }
 
  float execution_time = 0;
  int class_inference = 0;
  int scores[64];
 
  load_parameters(argv[1]);
  class_inference = inference(argv[2], scores, atol(argv[3]), &execution_time);
 
  cout << "Detected class " << class_inference << " in " << execution_time << " microseconds"
<< endl;
  deinit();
  if (class_inference != atol(argv[4])) {
    return 1;
  } else {
    return 0;
  }
}




	Introduction
	Context
	Project Motivation
	Problem and Need
	Justification

	Scope
	Ethical Considerations
	Objectives
	Project Structure

	Technical Requirements
	Functional Objectives
	Non-Functional Objectives

	Methodology and Resources
	Kanban
	Resources

	Budget and Planning
	Budget
	Planning

	State of the Art
	Key Areas
	Edge Computing
	System-on-Chip

	Platform Overview
	Zynq
	PYNQ

	Board Overview
	High-Level Synthesis
	Preceding Projects
	FINN
	Binarized Neural Networks
	Quantized Neural Networks


	Development
	Familiarization with the PYNQ Platform
	Facial Recognition
	LFC Setup
	LFC Usage
	CNV Setup
	CNV Usage

	Object Detection
	Setup
	Usage

	Integration of Facial Recognition and Object Detection
	Forked Projects

	Results
	Conclusions
	Future Work
	Personal Assessment

	Bibliography
	Vivado Block Designs
	Integration Utilization Report
	HLS Example

