
Application Acceleration Using a
Heterogeneous MPSoC Architecture with

MPU and FPGA Processors
Student: Mikel Solabarrieta Román
Director: Ignacio Angulo Martínez
Degree: Industrial Electronics and
Automation Engineering
University of Deusto - 2020

Index

1. Introduction
2. PYNQ
3. Facial Recognition
4. Object Detection
5. Integration
6. Results and Conclusions
7. Future Work
8. Questions and Answers

2

Introduction

3

Key areas

Edge Computing

· Process (and store) data close
to its origin

· Used in IoT

· General rule: closer to the data
means lower processing power

· Embedded devices

· Limited capabilities

4

System-on-Chip

· Integrated circuits

· CPU, memory, I/O ports…

· Usually without primary
storage

· Usually used for lightweight
edge computing

Can embedded devices run
computationally heavy tasks in real-time?

5

Facial recognition Object detection

Embedded Devices

6

· Homogeneous MPSoC (multicore)

· Low-power, portable (relevant for
IoT)

· Very extended

· Heterogeneous MPSoC: PS+PL

· PS is dominant

· PL allows certain tasks to run fast

Zynq

PS
(ARM)

7

PL
(FPGA)

Local
memory DMA

AXI

AXI AXI

AXI...

PYNQ

8

Overview

PYNQ exposes Zynq functionalities through a Python API.

Accessibility in mind.

Overlays (PL design) management.

Memory management.

Asyncio compatible.

Built over Linux.

Jupyter notebooks.
9

How?

Directly - less abstraction

from pynq import Overlay, Xlink

overlay = Overlay(...); overlay.download()

mem_array = Xlink().cma_array(...)

overlay.write(address, data)

Indirectly - more abstraction

import bnn

classifier = bnn.LfcClassifier(...)

result = classifier.classify_mnist(...)

or even

result = await classifier.classify_mnist(...)

10

Facial recognition

11

Initial situation (1/2)

Face recognition programs exist for PYNQ but they don’t take full advantage of PL.
Accelerated image transformation, but not classification.

· github.com/IarveJ/PYNQ_facialRec

OpenCV (mostly non-accelerated) for classification

· github.com/julianbartolone/doorbellcam

External library (non-accelerated) for classification

12

Initial situation (2/2)

There are similar accelerated classifiers: BNN-PYNQ.

MNIST, GTSRB…

Based on FINN, exposed to user as a high level API.

Therefore:
Repurpose BNN-PYNQ for this project.

13

C/C++ implementation of NN
(simpler to program, edit,

customize...)

FPGA designs in Vivado and
Verilog

HLS compiler

How? (1/2)

Tools are provided to train LFC and CNV
topologies.

Adapt a face dataset to the format used
by each topology.

MNIST for LFC: 28x28 grayscale, specific
header, dataset structure.

GTSRB for CNV: 32x32 RGB, location of
faces required, specific dataset structure.

14

Original

MNIST GTSRB

How? (2/2)

15

Prepare dataset

Train, validate and test model on PC

Generate weight bitstream on PC

Import bitstream on PYNQ

Call classifier

CNV

LFC

How? (2/2)

16

Prepare dataset

Import bitstream on PYNQ

Call classifier

CNV

LFC

Generate weight bitstream on PC

Train, validate and test model on PC

Usage

17

High level Python API

import bnn
from PIL import Image

img = Image(...)
img = format_image(img)

classifier = bnn.LfcClassifier(...) # or CnvClassifer
result = classifier.classify(img)

Pre-process image

Download overlay of topology,
load weight bitstream, wrap

methods

Allocate memory, assign
channels to MM, trigger
classifier, wait for results

Object detection

18

Initial situation (1/2)
Recent implementation of YOLO on PYNQ: QNN-MO-PYNQ.

Modified version of YOLOv2: less demanding but less accurate.

Partial implementation, but the most complete one available at the moment.

First and last layers have precision weights: can’t be quantized.

19

Initial situation (2/2)

Darknet: NN library written in C for SW processing.

Dependency lacking functions to extract results, can only display them.

Extracting results is vital for integration.

Therefore:
Modify Darknet and update the dependency.

20

How? (1/2)

Update latest Darknet version to include the methods of QNN-MO-PYNQ and any
other method required by the project.

Example:

21

C function Python binding

How? (2/2)

22

Modify Darknet

Compile new version in PYNQ device

Change QNN dependency

Download overlay and import bitstream

Configure network

Run classifier

Process results

Usage

23

High level Python API

import qnn
from PIL import Image

img = Image(...)
img = format_image(img)

net = darknet.lib.parse_network(...)
classifier = TinierYolo()
classifier.init_accelerator()

first_layer(net, ...) # sw
classifier.middle_layers(net, ...) # hw
last_layer(net, ...) # sw

results = post_process(net, ...)

Pre-process image

First layer: software
Middle layers: accelerated

Final layer: software

Allocate memory, assign
channels to MM, trigger
classifier, wait for results

Get detection boxes, sort and
filter results

Create and configure SW
network and HW classifier

Integration

24

How?

Expose the functionalities of both projects in a single Overlay.

For that: reconstruct the IP of each overlay and integrate them in a single design.

25

Reconstruct IPs

Fix resource conflicts

Create Zynq design

Connect IPs to Zynq module

Add other modules

Validate design

Synthesis

Implementation

Export

?

Close, but not there yet.

Resulting design didn’t fit the board PL.

Unable to reduce the size enough to fit.

26

Reconstruct IPs

Fix resource conflicts

Create Zynq design

Connect IPs to Zynq module

Add other modules

Validate design

Synthesis

Implementation

Export

?

Results and Conclusions

27

Results (1/3)

28

SW and HW
comparison

Topology
comparison

Results (2/3)

29

SW and HW
layer

comparison

SW and HW
classifier

comparison

Results (3/3)

30

Conclusions

· Performance is radically improved in critical sections of applications.

· PYNQ enables embedded devices to run demanding tasks with little latency, making
real-time execution possible.

· This confirmation will possibly impact edge-computing and IoT architecture design
paradigms.

· There is a lot of research and optimization potential.

31

Future Work

32

Future work

1. Test integration implementation in another device with a more resourceful PL.

2. Compare PYNQ device performance with other accelerated devices, such as
NVIDIA Jetsons.

3. Accelerate other less critical parts of the applications.

4. Test PYNQ on new applications.

33

Q&A

34

