Application Acceleration Using a
| Heterogeneous MPSoC Architecture with i
MPU and FPGA Processors

A

0, 9 \'@& ‘e

O\\O\\\\ ‘

oo W W \q Student Mlkel Solabarrleta Roman

5 [Director: Ignacio Angulo Martinez

“5;,, Degree: Industrial Electronics and
W Automation Engineering

University of Deusto - 2020

«

OO WDN

Introduction

PYNQ

Facial Recognition
Object Detection
Integration

Results and Conclusions
Future Work

Questions and Answers

Edge Computing System-on-Chip

- Process (and store) data close
to its origin

- Integrated circuits

- CPU, memory, I/O ports...

N - Used in loT

- Usually without primary

- General rule: closer to the data storage

means lower processing power

- Usually used for lightweight
edge computing

- Embedded devices
L }

- Limited capabilities

——

Can embedded devices run
computationally heavy tasks in real-time?

o -~

Facial recognition Object detection

Embedded Devices

- Homogeneous MPSoC (multicore) - Heterogeneous MPSoC: PS+PL
- Low-power, portable (relevant for - PS is dominant
loT)

. PL allows certain tasks to run fast
- Very extended

PYNQ exposes Zynqg functionalities through a Python API.

Accessibility in mind.
Overlays (PL design) management.
Memory management.

Asyncio compatible.

Built over Linux.

Jupyter notebooks.

o
i

Directly - less abstraction

from pynq import Overlay, Xlink

overlay = Overlay(...); overlay.download()
mem_array = Xlink().cma_array(...)
overlay.write(address, data)

Indirectly - more abstraction

import bnn

classifier = bnn.LfcClassifier(...)
result = classifier.classify_mnist(...)
or even

result = await classifier.classify mnist(...

&2
&3]
£
2]
]
]
B
]
]
]
]
]

lib
notebooks
overlays
pl_server
tests
__init__.py
bitstream.py
buffer.py
devicetree.py
ert.py
gpio.py

interrupt.py

0 OO DD DD DODDODDOD DO DO DO

mmio.py
overlay.py
pl.py
pmbus.py
ps.py
registers.py
tinynumpy.py
uio.py
utils.py
xclbin.py

xInk.py

xrt.py

Initial situation (1/2)

Face recognition programs exist for PYNQ but they don't take full advantage of PL.
Accelerated image transformation, but not classification.

- github.com/larve]/PYNQ facialRec bl il A

facenet = cv2.dnn.readNetFromCaffe(

face crop = face frame[faces[O][1]:f
age has to be a certain size for the N
mden A faceblob = cv2.dnn.blobFromImage(fac
OpenCV (mostly non-accelerated) for classification L e
facenet fingerprint = facenet.forwar
return facenet fingerprint

- github.com/julianbartolone/doorbellcam il

f 1 t f f L t ns‘(“rébrsmalkl f
External library (non-accelerated) for classification e T
by el e e i

12

Initial situation (2/2)

There are similar accelerated classifiers: BNN-PYNQ.

MNIST, GTSRB...

Based on FINN, exposed to user as a high level API.

Therefore:
Repurpose BNN-PYNQ for this project.

C/C++ implementation of NN
(simpler to program, edit,
customize...)

FPGA designs in Vivado and
Verilog

How? (1/2)

Tools are provided to train LFC and CNV
topologies.

Adapt a face dataset to the format used
by each topology.

MNIST for LFC: 28x28 grayscale, specific
header, dataset structure.

GTSRB for CNV: 32x32 RGB, location of
faces required, specific dataset structure.

MNIST GTSRB

ﬂ

Prepare dataset
Epoch 997 of 1000 took 19.433754921s
LR: 3.09893715972e-07
training loss: 0.00693385727983
validation loss: 0.0849743406848
validation error rate: 13.3333333333%
best epoch: 997
Train, validate and test model on PC best validation error rate: 13.3333333333%
test loss: 0.0115805853067

test error rate: 6.66666666667%
Generate welght bltstream on PC

Epoch 992 of 1000 took 1.93348097801 seconds
v LR: 3.25927687085e-07
training loss: 0.0916081467252

validation loss: 0.0945482701374
Import bitstream on PYNQ validation error rate: 12.5%
best epoch: 992
Call classifier

best validation error rate: 12.5%
test loss: 0.0483024631657
test error rate: 8.33333333333%

Prepare dataset _i . _
Epoch 997 of 1000 took 19.433754921s

- ER: 3.09893715972e-07
training loss: 0.00693385727983
] validation loss: 0.0849743406848
validation error rate: 13.3338333333%
. . best epoch: 997
Train, validate and test model on PC best validation error rate: 13.3333333333%
— test loss: 0.0115805853067
w ‘ test error rate: 6.66666666667%
Y %

Generate weight bi . m
l .

Epoch 992 of 1000 took 1.93348097801 seconds
LR: 3.25927687085e-07
training loss: 0.0916081467252
validation loss: 0.0945482701374
validation error rate: 12.5%

best epoch: 992
best validation error rate: 12.5%
‘\‘ test loss: 0.0483024631657

test error rate: 8.33333333333%

‘ ir .
L Call classifier -
‘ -

> -

import bnn
from PIL import Image

img = Image(...)

e Download overlay of topology,

load weight bitstream, wrap

classifier = bnn.LfcClassifier(...) # or CnvClassifer methods
result = classifier.classify(img)

Allocate memory, assign
channels to MM, trigger
classifier, wait for results

Recent implementation of YOLO on PYNQ: QNN-MO-PYNQ.

Modified version of YOLOV2: less demanding but less accurate.

Partial implementation, but the most complete one available at the moment.

First and last layers have precision weights: can't be quantized.
L o ... A Ea T -
=

Conv. + MaxPool Conv. + MaxPool Conv. + MaxPool Conv. + MaxPool Conv. + MaxPool Conv. + MaxPool

»

Conv. Conv.

A,

Darknet: NN library written in C for SW processing.

Dependency lacking functions to extract results, can only display them.
Extracting results is vital for integration.

Therefore:
Modify Darknet and update the dependency.

Update latest Darknet version to include the methods of QNN-MO-PYNQ and any
other method required by the project.

Example:

C function Python binding
detection *get network boxes(network *net, int w, int h, fl¢ get network boxes = lib.get network boxes
{ get network boxes.argtypes = [c void p, c int, c int, c f1
detection *dets = make network boxes(net, thresh, num); get_network boxes.restype = POINTER(DETECTION)
fill network boxes(net, w, h, thresh, hier, map, relativ

return dets;

Modify Darknet
—

Compile new version in PYNQ device
- Ll
Change QNN dependency

High level Python API //

import gnn
from PIL import Image

img = Image(...)
img = format_image(img)

net = darknet.lib.parse_network(...)
classifier = TinierYolo()
classifier.init_accelerator()

first layer(net, ...)
classifier.middle_layers(net,
last_layer(net, ...)

results = post_process(net,

-
~

Create and configure SW
network and HW classifier

First layer: software
Middle layers: accelerated
Final layer: software

Allocate memory, assign
channels to MM, trigger
classifier, wait for results

Get detection boxes, sort and
filter results

How?

Expose the functionalities of both projects in a single Overlay.

For that: reconstruct the IP of each overlay and integrate them in a single design.

Reconstruct IPs Add other modules
Fix resource conflicts Validate design
Create Zynq design Synthesis
I
Connect IPs to Zynq module Implementation

Export

25

Close, but not there yet.

Resulting design didn't fit the board PL.

Unable to reduce the size enough to fit.

Export

Reconstruct IPs Add other modules
Fix resource conflicts Validate design
Create Zynq design Synthesis
I
Connect IPs to Zynq module Implementation

26

SW and HW
comparison o

e O

]

Implementation

| | | | 1 1 1 1
0 5 10 15 20 0 20 4 6 8 100 120) 00 2200 00 400
LFCW1A1 average exec. time [ms] LFCW1A2 average exec. time [ms] CNVW1A1 average exec. time [ms]

Topology
comparison

Implementation

LFCW1Al

25 50 75 100 125 0 100 200 300 400 0 200 400 600 800 1000
HW execution time [ms] SW execution time [ms] HW frames per second [fps] SW frames per second [fps]

- .

SW and HW
classifier

Implementation

comparison

-\

SW and HW
layer
comparison

First + last layers (SW)

Layers

Middle layers (HW)

2000 4000 6000 8000 00 05
Average execution time [ms]

10 15 20 25
Average frames per second [fps]

100 150 200 250
Average execution time [ms]

Mikel Solabarrieta > % PYNQ > Details

PYNQ @ frstar 0
Project ID: 18074912

-0-27 Commits V 3Branches ¢J 0Tags [7.3 MBFiles E 7.3 MB Storage

Lock Replace Delete

[3 1. Object detection.ipynb 123vs [»

Object detection

This first notebook extracts people from images using an accelerated Quantized Neural Network.

The second notebook processes those images to feed them to the third notebook.

The third notebook identifies the faces extrated from the people of the first notebook using an accelerated Binarized Neural Network.

Jupyter Notebooks with the results of the undergrad thesis development.

Detection (using YoloV2)

Declare constants.

In [12: # storage configuration
DATA PATH = "data"

IMG_PATH = f"{DATA_PATH}/img"
SAMPLE_IMAGE_PATH = " {IMG_PATH}/friends.jpg"
PICKLE PATH = f"{DATA_PATH}/pickle”

PICKLE FILE = f"{PICKLE_PATH}/detections.pkl"

master ~ pynq History ~ Findfile & v

. Add LICENSE 45017133 B
Mikel Solabarrieta authored 1 week ago

8 BSD 3-clause "New" or "Revised" License # Python module configuration
DARKNET PATH = */opt/darknet”
PYTHON_PATH = "/usr/local/lib/python3.6"

PYTHON_PKG_PATH = f"{PYTHON_PATH}/dist-packages"
QNN_PATH = " {PYTHON_PKG_PATH}/qnn"

Name Last commit Last update

@ data Merge remote-tracking branch 'origin/ultra’ 1 week ago

Classifier configurations
ONN_SIZE = 416 # width and height of images used by Yolov2
ONN_THRESHOLD = 0.3 # certainty that there is an object in a box
lower -> more results
QNN_THRESHOLD_HIER = 0.5 # threshold to consider a class in a box
#0: follow the most certain path until a leaf node

¥ .gitignore Add .gitignore 2 months ago

[1. Object detection.ipynb Add benchmark notebooks 1 week ago

[2. Face extraction.ipynb Update notebooks 2 weeks ago

Import QNN, Darknet and other required modules. A custom version of darknet is installed in /opt/darknet when running the setup.py of QNN.

[3. Face recognition.ipynb Update face recognition notebook and object detection... 1 week ago This notebook uses a fork I made of a current version of darknet with the required changes made for the QNN version.

[3 4. Object detection benchmark.ipynb n (21 import gnn

from qnn import Tiniervolo, utils

Update face recognition notebook and object detection... 1 week ago

[5. Face recognition benchmark.ipynb Add FR fps comparison 1 week ago

import array
import ctypes
import cv:
import numpy as np
import os

0

[3 LICENSE Add LICENSE 1 week ago

- Performance is radically improved in critical sections of applications.

- PYNQ enables embedded devices to run demanding tasks with little latency, making
real-time execution possible.

- This confirmation will possibly impact edge-computing and loT architecture design
paradigms.

- There is a lot of research and optimization potential.
* Y

. R

Test integration implementation in another device with a more resourceful PL.

.

Compare PYNQ device performance with other accelerated devices, such as
NVIDIA Jetsons.

Accelerate other less critical parts of the applications.

Test PYNQ on new applications.

-

