Application Acceleration Using a Heterogeneous MPSoC Architecture with MPU and FPGA Processors

Student: Mikel Solabarrieta Román Director: Ignacio Angulo Martínez Degree: Industrial Electronics and Automation Engineering University of Deusto - 2020

Index

- 1. Introduction
- 2. PYNQ
- 3. Facial Recognition
- 4. Object Detection
- 5. Integration
- 6. Results and Conclusions
- 7. Future Work
- 8. Questions and Answers

Introduction

Key areas

Edge Computing

 Process (and store) data close to its origin

- · Used in IoT
- General rule: closer to the data means lower processing power
- Embedded devices
- Limited capabilities

System-on-Chip

- Integrated circuits
- · CPU, memory, I/O ports...
- Usually without primary storage
- Usually used for lightweight edge computing

Can embedded devices run computationally heavy tasks in real-time?

Facial recognition

Object detection

Embedded Devices

- Homogeneous MPSoC (multicore)
- Low-power, portable (relevant for IoT)
- · Very extended

- · Heterogeneous MPSoC: PS+PL
- PS is dominant
- · PL allows certain tasks to run fast

Zynq

PYNQ

PYNQ exposes Zynq functionalities through a Python API.

Accessibility in mind.

Overlays (PL design) management.

Memory management.

Asyncio compatible.

Built over Linux.

Jupyter notebooks.

How?

Directly - less abstraction

from pynq import Overlay, Xlink
overlay = Overlay(...); overlay.download()
mem_array = Xlink().cma_array(...)
overlay.write(address, data)

Indirectly - more abstraction

```
import bnn
classifier = bnn.LfcClassifier(...)
result = classifier.classify_mnist(...)
# or even
result = await classifier.classify_mnist(...)
```

		lib	D	mmio.py
		notebooks	۵	overlay.py
5		overlays	D	pl.py
5		pl_server	۵	pmbus.py
2		tests	۵	ps.py
e	Ľ	initpy	۵	registers.py
	D	bitstream.py	۵	tinynumpy.py
	D	buffer.py	D	uio.py
	D	devicetree.py	۵	utils.py
	D	ert.py	۵	xclbin.py
	ß	gpio.py	D	xlnk.py
	ß	interrupt.py	۵	xrt.py

Facial recognition

Initial situation (1/2)

Face recognition programs exist for PYNQ but they don't take full advantage of PL. Accelerated image transformation, but not classification.

github.com/larveJ/PYNQ_facialRec

OpenCV (mostly non-accelerated) for classification

· github.com/julianbartolone/doorbellcam

External library (non-accelerated) for classification

def classify_face(face_frame, faces): # Func ngerprint

facenet = cv2.dnn.readNetFromCaffe('bvlc face_crop = face_frame[faces[0][1]:faces age has to be a certain size for the Nueral faceblob = cv2.dnn.blobFromImage(face_cr facenet.setInput(faceblob) facenet_fingerprint = facenet.forward() return facenet_fingerprint

Find all the faces and face encodings in the current frame of vi face_locations = face_recognition.face_locations(rgb_small_frame) face_encodings = face_recognition.face_encodings(rgb_small_frame,

face_names = []

for face_encoding in face_encodings:

See if the face is a match for the known face(s)
matches = face_recognition.compare_faces(known_face_encodings
name = "Unknown"

If a match was found in known_face_encodings, just use the f if True in matches:

Initial situation (2/2)

There are similar accelerated classifiers: **BNN-PYNQ**.

MNIST, GTSRB...

Based on <u>FINN</u>, exposed to user as a high level API.

Therefore: Repurpose BNN-PYNQ for this project. C/C++ implementation of NN (simpler to program, edit, customize...)

HLS compiler

FPGA designs in Vivado and Verilog

How? (1/2)

Tools are provided to train LFC and CNV topologies.

Adapt a face dataset to the format used by each topology.

MNIST for LFC: 28x28 grayscale, specific header, dataset structure.

GTSRB for CNV: 32x32 RGB, location of faces required, specific dataset structure.

How? (2/2)

Prepare dataset

Train, validate and test model on PC

Generate weight bitstream on PC

Import bitstream on PYNQ

Call classifier

Epoch 997 of 1000 took 19.433754	921s	
LR:	3.09893715972e-07	
training loss:	0.00693385727983	
validation loss: 0.0849743406848		
validation error rate:	13.3333333333%	
best epoch:	997	
best validation error rate:	13.3333333333%	
test loss:	0.0115805853067	
test error rate:	6.6666666667%	

CNV

Epoch 992 of 1000 took 1.93	348097801 seconds
LR:	3.25927687085e-07
training loss:	0.0916081467252
validation loss:	0.0945482701374
validation error rate:	12.5%
best epoch:	992
best validation error rate:	12.5%
test loss:	0.0483024631657
test error rate:	8.333333333333%

LFC

How? (2/2)

Prepare dataset

Train, validate and test model on PC

Generate weight bitstream on PC

Import bitstream on PYNQ

Call classifier

Epoch 997 of 1000 took 19.433	754921s
LR:	3.09893715972e-07
training loss:	0.00693385727983
validation loss:	0.0849743406848
validation error rate:	13.3333333333%
best epoch:	997
best validation error rate:	13.3333333333%
test loss:	0.0115805853067
test error rate:	6.6666666667%

CNV

Epoch 992 of 1000 took 1.933	348097801 seconds
LR:	3.25927687085e-07
training loss:	0.0916081467252
validation loss:	0.0945482701374
validation error rate:	12.5%
best epoch:	992
best validation error rate:	12.5%
test loss:	0.0483024631657
test error rate:	8.33333333333%

LFC

Allocate memory, assign channels to MM, trigger classifier, wait for results

Object detection

Initial situation (1/2)

Recent implementation of YOLO on PYNQ: <u>QNN-MO-PYNQ</u>.

Modified version of YOLOv2: less demanding but less accurate.

Partial implementation, but the most complete one available at the moment.

First and last layers have precision weights: can't be quantized.

Initial situation (2/2)

Darknet: NN library written in C for SW processing.

Dependency lacking functions to extract results, can only display them.

Extracting results is vital for integration.

Therefore: Modify Darknet and update the dependency.

How? (1/2)

Update latest Darknet version to include the methods of QNN-MO-PYNQ and any other method required by the project.

Example:

C function

detection *get_network_boxes(network *net, int w, int h, float
{

detection *dets = make_network_boxes(net, thresh, num); fill_network_boxes(net, w, h, thresh, hier, map, relative, return dets;

Python binding

get_network_boxes = lib.get_network_boxes
get_network_boxes.argtypes = [c_void_p, c_int, c_int, c_floa
get_network_boxes.restype = POINTER(DETECTION)

How? (2/2)

Modify Darknet

Compile new version in PYNQ device

Change QNN dependency

Download overlay and import bitstream

Configure network

Run classifier

Process results

High level Python API

import qnn
from PIL import Image

img = Image(...)
img = format_image(img)

net = darknet.lib.parse_network(...)
classifier = TinierYolo()
classifier.init accelerator()

first_layer(net, ...) # sw
classifier.middle_layers(net, ...) # hw
last layer(net, ...) # sw

results = post_process(net, ...)

Pre-process image

Create and configure SW network and HW classifier

First layer: software Middle layers: accelerated Final layer: software

Allocate memory, assign channels to MM, trigger classifier, wait for results

Get detection boxes, sort and filter results

Integration

Expose the functionalities of both projects in a single Overlay.

For that: reconstruct the IP of each overlay and integrate them in a single design.

Close, but not there yet.

Resulting design didn't fit the board PL.

Unable to reduce the size enough to fit.

Results and Conclusions

Results (1/3)

Results (2/3)

Results (3/3)

PYNQ @		🖈 Star 0
• V Project 10, 16074912		
27 Commits P 3 Branches 27 0 Tags 🖄 7.3 M	B Files 🖶 7.3 MB Storage	
aaster v pynq	History Find file	🕹 👻 Clone 🗸
Add LICENSE Mikel Solabarrieta authored 1 week ago		4591f133 🕻
BSD 3-clause "New" or "Revised" License		
Name	Last commit	Last update
🖿 data	Merge remote-tracking branch 'origin/ultra'	1 week ago
ŷ.gitignore	Add .gitignore	2 months ago
1. Object detection.ipynb	Add benchmark notebooks	1 week ago
2. Face extraction.ipynb	Update notebooks	2 weeks ago
3. Face recognition.ipynb	Update face recognition notebook and object detection	
3 4. Object detection benchmark.ipynb	Update face recognition notebook and object detection	1 week ago
5. Face recognition benchmark.ipynb	Add FR fps comparison	1 week ago

🗎 1. Object detection.ipynb 1.23 MB 🛱

Object detection

This first notebook extracts people from images using an accelerated Quantized Neural Network.

The second notebook processes those images to feed them to the third notebook.

The third notebook identifies the faces extrated from the people of the first notebook using an accelerated Binarized Neural Network.

Detection (using YoloV2)

Declare constants.

In [1]: # Storage configuration
DATA_PATH = "data"

ING_PATH = f*{DATA_PATH}/img" SAMPLE_IMAGE_PATH = f*{IMG_PATH}/friends.jpg" PICKLE_PATH = f*{IMG_PATH}/pickle" PICKLE_FILE = f*{PICKLE PATH}/detections.pkl"

Python module configuration DARNACT_PATH = "/opt/darknet" PYTHON_PATH = "/usr/local/lib/python3.6" PYTHON_PATH = f"{PYTHON_PATH}/dist-packages" QNN_PATH = f*{PYTHON_PKE_PATH}/qnn"

Classifier configurations OWN SIZE 416 # width and height of images used by YoloV2 OWN THRESHOLD = 0.3 # certainty that there is an object in a box # lower -> more results OWN_THRESHOLD_HER = 0.5 # threshold to consider a class in a box # 0: follow the most certain path until a leaf node

Import QNN, Darknet and other required modules. A custom version of darknet is installed in /opt/darknet when running the setup.py of QNN.

This notebook uses a fork I made of a current version of darknet with the required changes made for the QNN version.

In [2]:	import qnn from qnn import TinierYolo, utils
	import array import ctypes
	import cv2
	import numpy as np
	import os

Conclusions

- Performance is radically improved in critical sections of applications.
- PYNQ enables embedded devices to run demanding tasks with little latency, making real-time execution possible.
- This confirmation will possibly impact edge-computing and IoT architecture design paradigms.
- There is a lot of research and optimization potential.

Future Work

Future work

- 1. Test integration implementation in another device with a more resourceful PL.
- 2. Compare PYNQ device performance with other accelerated devices, such as NVIDIA Jetsons.
- 3. Accelerate other less critical parts of the applications.
- 4. Test PYNQ on new applications.

Q&A